Gene Transfer pp 411-441 | Cite as

Developments Leading to Human Gene Therapy

  • John W. Belmont
  • C. Thomas Caskey


The development of recombinant-DNA technology has provided an exciting research stimulus to the field of human genetics. The building of the human gene map, the establishment of new linkage methods, the isolation of many disease-related genes, and the application of molecular genetics to the problems of Huntington’s chorea and Duchenne muscular dystrophy all indicate the power of this technology. Currently, several groups are exploring the use of these methods for a new therapeutic purpose—development of gene-replacement therapy (Cline, 1982; Anderson, 1981, 1984). The purpose of this review is to examine the elements needed for in vivo gene transfer and to assess the potential for human gene therapy.


Chronic Granulomatous Disease Adenosine Deaminase Lysosomal Storage Disease Purine Nucleoside Phosphorylase Carbamoyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. M., Finley, S., Hamsen, H., Jahiel, R., Oakley, G., Sanger, W., Wells, G., and Wertelecki, W., 1980, Utilization of prenatal diagnosis in women 35 years of age and older in the United States, 1977–1978, Am. J. Obstet. Gynecol. 139: 673.Google Scholar
  2. Adrian, G. S., Wiginton, D. A., and Hutton, J. J., 1984, Structure of adenosine deaminase mRNA’s from normal and adenosine deaminase-deficient human cell lines, Mol. Cell. Biol. 4: 1712.PubMedGoogle Scholar
  3. Anderson, W. F., 1981, Gene therapy, JAMA 246: 2737.PubMedGoogle Scholar
  4. Anderson, W. F., 1984, Prospects for human gene therapy, Science 226: 401.PubMedGoogle Scholar
  5. Bandyopadhyay, P. K., and Temin, H. M., 1984, Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector, Mol. Cell. Biol. 4: 749.PubMedGoogle Scholar
  6. Bandyopadhyay, P. K., Watanabe, S., and Temin, H. M., 1984, Recombination of transfected DNA’s in vertebrate cells in culture, Proc. Natl. Acad. Sci. U.S.A. 81: 3476.PubMedGoogle Scholar
  7. Beaudet, A. L., 1985, Bibliography of cloned human and other selected DNA’s, Am. J. Hum. Genet. 37: 386.PubMedGoogle Scholar
  8. Bernstein, A., Berger, S., Huszar, D., and Dick, J., 1985, Gene transfer with retrovirus vetors, in: Genetic Engineering: Principles and Methods, Vol. 7 ( J. K. Setlow and A. Hollaender, eds.) p. 235, Plenum Press, New York.Google Scholar
  9. Bilheimer, D. W., Goldstein, J. L., Grundy, S. M., Starzl, T. E., and Brown, M. S., 1984, Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia, N. Engl. J. Med. 311: 1658.PubMedGoogle Scholar
  10. Bortin, M. M., and Rimm, A. A., 1977, Severe combined immunodeficiency disease: Characterization of the disease and results of transplantation, JAMA 238: 591.PubMedGoogle Scholar
  11. Brand, A. H., Breeden, L., Abraham, J., Sternglanz, R., and Nasmyth, K., 1985, Characterization of a “silencer” in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer, Cell 41: 41.PubMedGoogle Scholar
  12. Broome, S., and Gilbert, W., 1978, Immunological screening method to detect specific translation products, Proc. Natl. Acad. Sci. U.S.A. 75: 2746.PubMedGoogle Scholar
  13. Cepko, C., Roberts, B. E., and Mulligan, R., 1984, Construction and application of a highly transmissible murine retrovirus shuttle vector, Cell 37: 1053.PubMedGoogle Scholar
  14. Champlin, R. E., and Gale, R. P., 1984, The early complications of bone marrow transplantation, Semin. Hematol. 21: 101.PubMedGoogle Scholar
  15. Chien, Y.-H., Becker, D. M., Lindsten, T., Okamura, M., Cohen, D. I., and Davis, M. M., 1984, A third type of murine T-cell receptor gene, Nature (London) 312: 31.Google Scholar
  16. Cline, M. J., 1982, Genetic engineering of mammalian cells: Its potential application to genetic diseases of man, J. Lab. Clin. Med. 99: 299.PubMedGoogle Scholar
  17. Coccia, P. F., Krivit, W., Cervenka, J., Clawson, C., Kersey, J. H., Sim, T. H., Nesbit, M. E., Ramsey, N. K., Warkentin, P. I., Teitelbaum, S. L., Kahm, A. J., and Brown, D. M., 1980, Successful bone-marrow transplantation for infantile malignant osteopetrosis, N. Engl. J. Med. 302: 701.PubMedGoogle Scholar
  18. Cone, R., and Mulligan, R. C., 1984, High efficiency gene transfer into mammalian cells: Generation of helper-free recombinant retrovirus with broad mammalian host range, Proc. Natl. Acad. Sci. U.S.A. 81: 6349.PubMedGoogle Scholar
  19. Corsaro, C. M., and Pearson, M. L., 1981a, Enhancing the efficiency of DNA-mediated gene transfer in mammalian cells, Somat. Cell. Genet. 7: 603.PubMedGoogle Scholar
  20. Corsaro, C. M., and Pearson, M. L., 1981b, Competence for DNA transfer of oubain resistance and thymidine kinase: Clonal variation in mouse L-cell recipients, Somat. Cell Genet. 7: 617.PubMedGoogle Scholar
  21. De Saint Vincent, B. R., and Wahl, G. M., 1983, Homologous recombination in mammalian cells mediates formation of a functional gene from two overlapping gene fragments, Proc. Natl. Acad. Sci. U.S.A. 80:2002.Google Scholar
  22. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A., and Bernstein, A., 1985, Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hematopoietic system of W/W“ mice, Cell 42: 71.PubMedGoogle Scholar
  23. DiFerrante, N., Hyman, B. H., Klish, W., Donnell, P. V., Nichols, B. L., and Dutton, R. G., 1974, Mucopolysaccharidosis VI (Maroteaux—Lamy disease): Clinical and biochemical study of a mild variant case, Johns Hopkins Med. J. 135: 42.Google Scholar
  24. DiMaio, D., Treisman, R., and Maniatis, T., 1982, Bovine papillomavirus vector that propagates as a plasmid in both mouse and bacterial cells, Proc. Natl. Acad. Sci. U.S.A. 79: 4030.PubMedGoogle Scholar
  25. Elder, J. T., Spritz, R. A., and Weissman, S., 1981, Simian virus 40 as a eukaryotic cloning vehicle, Annu. Rev. Genet. 15: 295.PubMedGoogle Scholar
  26. Emerman, M., and Temin, H., 1984, High frequency deletion in recovered retrovirus vectors containing exogenous DNA with promoters, J. Virol. 50: 42.PubMedGoogle Scholar
  27. Foroonzofar, N., Hobbs, J. R., and Hugh-Jones, K., 1977, Bone marrow transplantation from an unrelated donor for chronic granulomatous disease, Lancet 1: 210.Google Scholar
  28. Friedman, R., 1985, Expression of human adenosine deaminase using a transmissible murine retrovirus vector system, Proc. Natl. Acad. Sci. U.S.A. 82: 703.PubMedGoogle Scholar
  29. Gasper, P. W., Thrall, M. A., Wenger, D. A., Macy, D. W., Ham, L., Dornsife, R. E., McBiles, K., Quackenbush, S. L., Kesel, M. L., Gillette, E. L., and Hover, E. A., 1984, Correction of feline arylsulfatase B deficiency (mucopolysaccharidosis VI) by bone marrow transplantation, Nature (London) 312: 467.Google Scholar
  30. Gilboa, E., 1983, Use of retrovirus-derived vectors to introduce and express genes in mammalian cells, in: Experimental Manipulation of Gene Expression ( M. Inouye, ed.), p. 175, Academic Press, New York.Google Scholar
  31. Ginns, E. I., Rappeport, J., and Brady, R., 1982, Correction of glucocerebrosidase deficiency in Gaucher’s disease by bone marrow transplantation, Blood 60: 168A.Google Scholar
  32. Gluckman, E., Berger, R., and Dutreix, J., 1984, Bone marrow transplantation for Fanconi anemia, Semin. Hematol. 21: 20.PubMedGoogle Scholar
  33. Haldane, J. B. S., 1947, The mutation rate of the gene for hemophilia and its segregation ratios in males and females, Ann. Eugen. 13: 262.PubMedGoogle Scholar
  34. Hazelrigg, T., Levis, R., and Rubin, G. M., 1984, Transformation of white locus DNA in Drosophila: Dosage compensation, zeste interaction, and position effects, Cell 36: 469.PubMedGoogle Scholar
  35. Hirschhorn, R., Roegner-Maniscalco, V., Kuritsky, L., and Rosen, F. S., 1981, Bone marrow transplantation only partially restores purine metabolites to normal in adenosine deaminasedeficient patients, J. Clin. Invest. 68: 1387.PubMedGoogle Scholar
  36. Hobbs, J. R., Hugh-Jones, K., and Barrett, A. J., 1981, Reversal of clinical features of Hurler’s disease and biochemical improvement after treatment by bone marrow transplantation, Lancet 2: 709.PubMedGoogle Scholar
  37. Howell, R. R., Stevenson, R. E., Ben-Menachem, Y., Philiky, R. L., and Berry, D. H., 1976, Hepatic adenomata in patients with Type I glycogen storage disease (von Gierke’s), JAMA 236: 1481.PubMedGoogle Scholar
  38. Hugh-Jones, K., Kendra, J., and James, D. C. Q., 1982, Treatment of San Filipo B disease (MPSIIIB) by bone marrow transplant, Exp. Hematol. 10 (Suppl.): 50.Google Scholar
  39. Hwang, L.-H. S., and Gilboa, E., 1984, Expression of genes introduced into cells by retroviral infection is more efficient than that of genes introduced by DNA transfection, J. Viol. 50: 417.Google Scholar
  40. Iwatsuki, S., Shaw, B. W., and Starzl, T. E., 1985, Five-year survival after liver transplantation, Transplant. Proc. 17: 259.PubMedGoogle Scholar
  41. Jaenisch, R., Fan, H., and Croker, B., 1975, Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: Tissue distribution of viral DNA and RNA and leukemogenesis in the adult animal, Proc. Natl. Acad. Sci. U.S.A. 72: 4008.PubMedGoogle Scholar
  42. Jaenisch, R., Milner, D., Nobis, P., Simon, I., Uhler, J., Harbers, K., and Grotkopp, D., 1981, Chromosomal position and activation of retroviral genomes inserted into the germ line mice, Cell 24: 519.PubMedGoogle Scholar
  43. Johnson, F. L., Look A. T., Gockerman, J., Ruggiero, M. R., Dalla-Pozza, L., and Billings, F., 1984, Bone-marrow transplantaton in a patient with sickle-cell anemia, N. Engl. J. Med. 311: 780.PubMedGoogle Scholar
  44. Jolly, D. J., Willis, R., and Friedman, T., 1984, Site dependent frequencies and molecular mechanisms of reversion of single copy introduced HPRT genes in human cells, Am. J. Hum. Genet. 36 (Suppl.): 1415.Google Scholar
  45. Joss, V., Rogers, T. V., and Hugh-Jones, K., 1982, A bone marrow transplant for metachromatic leukodystrophy, Exp. Hematol. 10 (Suppl.): 52.Google Scholar
  46. Joyner, A. L., and Bernstein, A., 1983a, Retrovirus transduction: Generation of infectious retro-viruses expressing dominant and selectable genes is associated with in vivo recombination and deletion events, Mol. Cell. Biol. 3: 2180.PubMedGoogle Scholar
  47. Joyner, A. L., and Bernstein, A., 1983b, Retrovirus transduction: Segregation of the viral transforming function and the herpes simplex virus tk gene in infectious Friend spleen focus-forming virus thymidine kinase vectors, Mol. Cell. Biol. 3: 2191.PubMedGoogle Scholar
  48. Joyner, A., Keller, G., Phillips, R. A., and Bernstein, A., 1983, Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells, Nature (London) 305: 556.Google Scholar
  49. Karlson, S., Humphries, R. K., Gluzman, Y., and Nienhuis, A. W., 1985, Transfer of genes into haematopoietic cells using recombinant DNA viruses, Proc. Natl. Acad. Sci. U.S.A. 82: 158.Google Scholar
  50. Kaufman, R. J., Wasley, L. C., Spiliates, A. J., Gossels, S. D., Latt, S. A., Larsen, G. R., and Kay, R. M., 1985, Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells, Mol. Cell. Biol. 5: 1750.PubMedGoogle Scholar
  51. King, W., Patel, M. D., Lobel, L. I., Goff, S. P., and Nguyen-Huu, C., 1985, Insertion mutagenesis of embryonal carcinoma cells by retroviruses, Science 228: 554.PubMedGoogle Scholar
  52. Kredich, N., and Hershfield, M., 1983, Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), p. 1157, McGraw-Hill, New York.Google Scholar
  53. Kriegler, M., Perez, C. F., Hardy, C., and Botchan, M., 1984, Transformation mediated by the SV40 T antigens: Separation of the overlapping SV40 early genes with a retroviral vector, Cell 38: 483.PubMedGoogle Scholar
  54. Krivit, W., Pierpont, M. E., Ayaz, K., Tsai, M., Ramsay, N., Kersey, J. H., Weisdorf, S., Sibley, R., Snover, D., McGovern, M. M., Schwartz, M. F., and Desnick, R. J., 1984, Bone-marrow transplantation in the Maroteaux—Lamy syndrome (mucopolysaccharidosis Type VI), N. Engl. J. Med. 311: 1606.PubMedGoogle Scholar
  55. Kunkel, L. M., Monaco, A. P., Middlesworth, W., Ochs, H. D., and Latt, S. A., 1985, Specific cloning of DNA fragments absent from the DNA of a male patient with an X chromosome deletion, Proc. Natl. Acad. Sci. U.S.A. 82: 4778.PubMedGoogle Scholar
  56. Ledley, F. D., Grenett, H. E., McGinnis-Shelnutt, M., and Woo, S. L. C., 1986, Retroviral mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells, Proc. Natl. Acad. Sci. U.S.A. 83: 409.PubMedGoogle Scholar
  57. Lenz, J., Celander, D., Crowther, R. L., Patarca, R., Perkins, D. W., and Haseltine, W. A., 1984, Determination of the leukemogenicity of a murine retrovirus by sequences within the long terminal repeat, Nature (London) 308: 467.Google Scholar
  58. Lucarelli, G., Izzi, T., and Polchi, P., 1983, Bone marrow transplantation in thalassemia, Exp. Hematol. 11 (Suppl.): 101.Google Scholar
  59. Luthy, D. A., Emanuel, I., Hoehm, H., Hall, J. G., and Powers, E. K., 1980, Prenatal genetic diagnosis and elective abortion in women over 35: Utilization and relative impact on the birth prevalence of Down syndrome in Washington State, Am. J. Med. Genet. 7: 375.PubMedGoogle Scholar
  60. Mackett, M., Smith, G. L., and Moss, B., 1982, Vaccinia virus: A selectable eukaryotic cloning and expression vector, Proc. Natl. Acad. Sci. U.S.A. 79: 7415.PubMedGoogle Scholar
  61. Mackett, M., Smith, G. L., and Moss, B., 1984, General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes, J. Virol. 49: 857.PubMedGoogle Scholar
  62. Mann, R., Mulligan, R. C., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell 33: 153.PubMedGoogle Scholar
  63. Matas, A. J., Desnick, R. J., Najarian, J. S., and Simmons, R. L., 1978, Clinical and experimental transplantation in enzymatic deficiency disease, Surg. Gynecol. Obstet. 146: 975.PubMedGoogle Scholar
  64. Matsui, S. M., Mahoney, M. J., and Rosasnberg, L. E., 1983, The natural history of the inherited methylmalonic acidemias, N. Engl. J. Med. 308: 857.PubMedGoogle Scholar
  65. Miller, A. D., Jolly, D. J., Friedman, T., and Verma, I. M., 1983, A transmissible retrovirus expressing human hypoxanthine phosphoribosyl transferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT, Proc. Natl. Acad. Sci. U.S.A. 80: 4709.PubMedGoogle Scholar
  66. Miller, A. D., Eckner, R. J., Jolly, D. J., Friedman, T., and Verma, I. M., 1984, Expression of a retrovirus encoding human HPRT in mice, Science 225: 630.PubMedGoogle Scholar
  67. Miller, A. D., Law, M.-F., and Verma, I. M., 1985, Generation of helper-free amphotropic retro-viruses that transduce a dominant-actng, methotrexate-resistant dihydrofolate reductase gene, Mol. Cell. Biol. 5: 431.PubMedGoogle Scholar
  68. Milunsky, A., 1976, Prenatal diagnosis of genetic disorders, N. Engl. J. Med. 300: 157.Google Scholar
  69. Mulligan, R., 1983, Construction of highly transmissible mammalian cloning vehicles derived from murine retroviruses, in: Experimental Manipulation of Gene Expression ( M. Inouye, ed.), p. 155, Academic Press, New York.Google Scholar
  70. Ochs, H. D., Lum, L. G., Johnson, F. L., Schiffman, G., Wedgewood, R. J., and Storb, R., 1982, Bone marrow transplantation in the Wiskott—Aldrich syndrome: Complete hematological and immunological reconstitution, Transplantation 34: 284.PubMedGoogle Scholar
  71. O’Hare, K., and Rubin, G. M., 1983, Structures of P elements and their sites of insertion and excision in the Drosophila melanogaster genome, Cell 34: 25.PubMedGoogle Scholar
  72. O’Reilly, R. J., Kirkpatrick, D., and Cunningham-Rundles, S., 1983a, Transplantation for severe combined immunodeficiency using histoincompatible parental marrow fractionated by soybean agglutinin and sheep red blood cells: Experience in six consecutive cases, Transplant. Proc. 15: 1431.Google Scholar
  73. O’Reilly, R. J., Kapoor, N., and Kirkpatrick, D., 1983b, Transplantation of hematopoietic cells for lethal congenital immunodeficiencies, Birth Defects 19: 129.PubMedGoogle Scholar
  74. O’Reilly, R. J., Brochstein, J., Dinsmore, R., and Kirkpatrick, D., 1984, Marrow transplantation for congenital disorders, Semin. Hematol. 21: 188.PubMedGoogle Scholar
  75. Orkin, S. H., Daddona, P. E., Shewach, D. S., Markham, A. F., Bruns, G., Goff, S. C., and Kelley, W. N., 1983, Molecular cloning of human adenosine deaminase gene sequences, J. Biol. Chem. 258: 12, 753.Google Scholar
  76. Parkman, R., Rappeport, J., Geha, R., Belli, J., Cassady, R., Levey, R., Nathan, D. G., and Rosen, F. S., 1978, Complete correction of the Wiskott—Aldrich syndrome by allogeneic bone-marrow transplantation, N. Engl. J. Med. 298: 921.PubMedGoogle Scholar
  77. Perucho, M., Hanahan, D., and Wigler, M., 1980, Genetic and physical linkage of exogenous sequences in transformed cells, Cell 22: 309.PubMedGoogle Scholar
  78. Potter, H., Weir, L., and Leder, P., 1984, Enhancer-dependent expression of human K immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. U.S.A. 81: 7161.PubMedGoogle Scholar
  79. Prentice, H. G., Blacklock, H. A., and Janossy, G., 1982, Use of anti-T cell monoclonal antibody OKT3 to prevent acute graft-versus-host disease in allogeneic bone marrow transplantation for leukemia, Lancet 1: 700.PubMedGoogle Scholar
  80. President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research, 1982, Splicing Life, Government Printing Office, Washington, D.C.Google Scholar
  81. Rappeport, J. M., Parkman, R., Newburger, P., Camitta, B. M., and Chusid, M. J., 1980, Correction of infantile agranulocytosis (Kostman’s syndrome) by allogenic bone marrow transplantation, Am. J. Med. 68: 605.PubMedGoogle Scholar
  82. Rappeport, J. M., Newburger, P. E., and Goldblum, R. M., 1982, Allogeneic bone marrow transplantation for chronic granulomatous disease, J. Pediatr. 101: 952.PubMedGoogle Scholar
  83. Rohes, K., Williams, R., Neuberger, J., and Caine, R., 1984, The Cambridge and King’s College Hospital experience of liver transplantation, 1968–1983, Hepatology 4: 50S.Google Scholar
  84. Rosenbloom, F. M., Kelley, W. M., Miller, J., Henderson, J. F., and Seegmiller, J. E., 1967, Inherited disorder of purine metabolism: Correlation between central nervous system dysfunction and biochemical defects, JAMA 202: 175.PubMedGoogle Scholar
  85. Rubin, H., 1965, Genetic control of cellular susceptibility to pseudotypes of Rous sarcoma virus, Virology 26: 270.PubMedGoogle Scholar
  86. Rubnitz, J., and Subramani, S., 1985, Rapid assay for extrachromosomal homologous recombination in monkey cells, Mol. Cell. Biol. 5: 529.PubMedGoogle Scholar
  87. Scharschmidt, B. F., 1984, Human liver transplantation: Analysis of data on 540 patients from four centers, Hepatology 4: 95S.PubMedGoogle Scholar
  88. Shearer, W. T., Ritz, J., Finegold, M., Guerra, I. C., Rosenblatt, H., Lewis, D. E., Pollack, M. S., Taber, L. H., Sumaya, C. V., Grumet, F. C., Cleary, M. L., Warnke, R., and Sklar, J., 1985, Epstein—Barr virus-associated B-cell proliferations of diverse clonal origins after bone marrow transplantation in a 12-year-old patient with severe combined immunodeficiency, N. Engl. J. Med. 312: 1151.PubMedGoogle Scholar
  89. Shimotohno, K., and Temin, H. M., 1980, No apparent nucleotide sequence specificity in cellular DNA juxtaposed to retrovirus proviruses, Proc. Natl. Acad. Sci. U.S.A. 77: 7357.PubMedGoogle Scholar
  90. Sly, W. S., Whyte, M. P., Sundaram, V., Tashian, R. E., Hewett-Emmett, D., Guibaud, P., Vainsel, M., Baluarte, H. J., Gruskin, A., and Al-Mosawi, M., 1985, Carbonic anhydrase II deficiency in 12 families with autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification, N. Engl. J. Med. 313: 139.PubMedGoogle Scholar
  91. Sorell, M., Kapoor, N., Kirkpatrick, D., Rosen, J. F., Chaganti, R. S., Lopez, C., Dupont, B., Pollack, M. S., Terrin, B. N., Harris, M. B., Vine, D., Rose, J. S., Goosen, C., Lane, J., Good, R. A., and O’Reilly, R. J., 1981, Marrow transplantation for juvenile osteopetrosis, Am. J. Med. 70: 1280.PubMedGoogle Scholar
  92. Spradling, A. C., and Rubin, G. M., 1983, The effect of chromosomal position on the expression of the Drosophila xanthine oxidase gene, Cell 34: 47.PubMedGoogle Scholar
  93. Starzl, T. E., Iwatsuki, S., Shaw, B. W., Van Thiel, D. H., Gartner, J. C., Zitelli, B. J., Malatack, J. J., and Schade, R. R., 1984, Analysis of liver transplantation, Hepatology 4: 47S.PubMedGoogle Scholar
  94. Starzl, T. E., Iwatsuki, S., Shaw, B. W., and Gordon, R. D., 1985, Orthotopic liver transplantation, Transplant. Proc. 17: 250.Google Scholar
  95. Stuhlman, H., Cone, R., Mulligan, R. C., and Jaenisch, R., 1984, Introduction of a selectable gene into different animal tissue by a retrovirus recombinant vector, Proc. Natl. Acad. Sci. U.S.A. 81: 7151.Google Scholar
  96. Suggs, W. V., Wallace, R. B., Hirose, T., Kawashima, E. H., and Itakura, K., 1981, Use of synthetic oligonucleotides as hybridization probes: Isolation of clones cDNA sequences for human 32-microglobulin, Proc. Natl. Acad. Sci. U.S.A. 78: 6613.PubMedGoogle Scholar
  97. Sullivan, K. M., Deeg, J., Sanders, J. E., Schulman, H. M., Witherspoon, R. P., Doney, K., Applebaum, F. R., Schubert, M. M., Stewart, P., Springmeyer, S., McDonald, G. B., Storb, R., and Thomas, E. D., 1984, Late complications after marrow transplantation, Semin. Hematol. 21: 53.PubMedGoogle Scholar
  98. Tanaka, K., and Rosenberg, L. E., 1983, Disorders of propionate and methylmalonate metabolism, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), p. 474, McGraw-Hill, New York.Google Scholar
  99. Thomas, E. D., Buckner, C. D., and Sanders, J. E., 1982, Marrow transplantation for thalassemia, Lancet 2: 227.PubMedGoogle Scholar
  100. Tutschka, P. J., Yeager, A. M., and Moser, H. W., 1983, Bone marrow transplantaton in adrenoleukodystrophy, Pediatr. Res. 17: 221A.Google Scholar
  101. Ullrich, A., Berman, C. H., Dull, T. J., Gray, A., and Lee, J. M., 1984, Isolation of the human insulin-like growth factor I gene using a single synthetic DNA probe, EMBO J. 3: 361.PubMedGoogle Scholar
  102. United States Congress, 1982, House hearings on human genetic engineering before the subcommittee on investigations and oversight of the Committee on Science and Technology, 97th Congress, 2nd Session, No. 170, Government Printing Office, Washington, D.C.Google Scholar
  103. Valerio, D., Duyvesteyn, M. G. C., Khan, P. M., van Kessel, A. G., de Waard, A., and van der Eb, A. J., 1983, Isolation of cDNA clones for human adenosine deaminase, Gene 25: 231.Google Scholar
  104. Valerio, D., Duyvesteyn, M. G. C., and van der Eb, A. J., 1984, Introduction of sequences encoding functional human adenosine deaminase into mouse cells using a retrovirus shuttle system, Gene 34: 163.Google Scholar
  105. Valerio, D., Duyvesteyn, M. G. C., Dekker, B. M. M., Weeda, G., Berkvens, T. M., van der Voorn, L., van Ormondt, H., and van der Eb, A. J., 1985, Adenosine deaminase: Characterization and expression of a gene with a remarkable promoter, EMBO J. 4: 437.PubMedGoogle Scholar
  106. Van Bekkum, D., 1984, Conditioning regimens for marrow grafting, Semin. Hematol. 21: 81.PubMedGoogle Scholar
  107. Van Der Putten, H., Botteri, F. M., Miller, A. D., Rosenfeld, M. G., Fan, H., Evans, R. M., and Verma, I. M., 1985, Efficient insertion of genes into the mouse germ line via retroviral vectors, Proc. Natl. Acad. Sci. U.S.A. 82: 6148.PubMedGoogle Scholar
  108. Van Doren, K., and Gluzman, Y., 1984, Efficient transformation of human fibroblasts by adenovirus-simian virus 40 recombinants, Mol. Cell. Biol. 4: 1653.PubMedGoogle Scholar
  109. Varmus, H. E., Quintrell, N., and Ortiz, S., 1981, Retroviruses as mutagens: Insertion and excision of a nontransforming provirus alter expression of a resident transforming provirus, Cell 25: 23.PubMedGoogle Scholar
  110. Vierling, J. M., 1984, Epidemiology and clinical course of liver diseases: Identification of candidates for hepatic transplantation, Hepatology 4: 84S.PubMedGoogle Scholar
  111. Walser, M., 1983, Urea cycle disorders and other hereditary hyperammonemic syndromes, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), p. 402, McGraw-Hill, New York.Google Scholar
  112. Walser, M., Batshaw, M., Sherwood, G., Robinson, B., and Brusilow, S., 1977, Nitrogen metabolism in neonatal citrullinemia, Clin. Sci. Mol. Med. 53: 173.PubMedGoogle Scholar
  113. Weiss, R., 1984, Experimental biology and assay of retroviruses, in: RNA Tumor Viruses, Vol. 1 ( R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), p. 209, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  114. Wiginton, D. A., Adrian, G. S., Friedman, R. L., Suttle, D. P., and Hutton, J. J., 1983, Cloning of cDNA sequences of human adenosine deaminase, Proc. Natl. Acad. Sci. U.S.A. 80: 7481.PubMedGoogle Scholar
  115. Wigler, M., Perucho, M., Kurtz, D., Dana, S., Pellicer, A., Axel, R., and Silverstein, S., 1980, Transformation of mammalian cells with an amplifiable dominant-acting gene, Proc. Natl. Acad. Sci. U.S.A. 77: 3576.Google Scholar
  116. Williams, D. A., Lemischka, I. R., Nathan, D. G., and Mulligan, R. C., 1984, Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse, Nature (London) 310: 476.Google Scholar
  117. Willis, R., Jolly, D. J., Miller, A. D., Pleut, M. M., Esty, A. C., Anderson, P. J., Chang, H.-C., Jones, O. W., Seegmiller, J. E., and Friedman, T. F., 1984, Partial phenotypic correction of human Lesch-Nyhan (hypoxanthine-guanine phosphoribosyltransferase-deficient) lymphoblasts with a transmissible retroviral vector, J. Biol. Chem. 259: 7842.PubMedGoogle Scholar
  118. Witherspoon, R. P., Lum, L. G., and Storb, R., 1984, Immunologic reconstitution after human marrow grafting, Semin. Hematol. 21: 2.PubMedGoogle Scholar
  119. Wolf, L., and Ruschetti, S., 1985, Malignant transformation of erythroid cells in vivo by introduction of a nonreplicating retrovirus vector, Science 228: 1549.Google Scholar
  120. Wong, G. G., Witek, J. S., Temple, P. A., Wilkens, K. M., Leary, A. C., Luxenberg, D. P., Jones, S. S., Brown, E. L., Kay, R. M., On, E. C., Shoemaker, C., Golde, D. W., Kaufman, R. J., Hewick, R. M., Wang, E. A., and Clark, S. C., 1985, Human GM-CSF: Molecular cloning of the complementary DNA and purification of the natural and recombinant proteins, Science 228: 810.PubMedGoogle Scholar
  121. Wood, P. A., Herman, G. E., Chao, J. C.-Y., O’Brian, W. E., and Beaudet, A. L., 1986, Retrovirusmediated gene transfer of argininosuccinic acid synthetase into cultured rodent and human cells, Cold Spring Harbor Symp. Quant. Biol. (in press).Google Scholar
  122. Yates, J. L., Warren, N., and Sugden, B., 1985, Stable replication of plasmids derived from Epstein—Barr virus in various mammalian cells, Nature (London) 313: 812.Google Scholar
  123. Yeung, C.-Y., Ingolia, D. E., Bobonis, C., Dunbar, B. S., Riser, M. E., Siciliano, M. J., and Kellems, R. E., 1983a, Selective overproduction of adenosine deaminase in cultured mouse cells, J. Biol. Chem. 258: 8338.PubMedGoogle Scholar
  124. Yeung, C.-Y., Riser, M. E., Kellems, R. E., and Siciliano, M. J., 1983b, Increased expression of one of two adenosine deaminase alleles in a human choriocarcinoma cell line following selecton with adenine nucleosides, J. Biol. Chem. 258: 8330.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John W. Belmont
    • 1
  • C. Thomas Caskey
    • 1
  1. 1.Institute for Molecular Genetics and Howard Hughes Medical InstituteBaylor College of MedicineHoustonUSA

Personalised recommendations