Gene Transfer pp 383-409 | Cite as

Intrachromosomal Recombination in Mammalian Cells

  • Anthea Letsou
  • R. Michael Liskay


The technologies of gene transfer and recombinant DNA can be exploited to construct artificial gene duplications of a selectable gene in cultured mammalian cells. These pairs of closely linked genes, harboring different mutations, are stably integrated in the host genome by means of a separate dominant selectable marker and therefore provide an opportunity to systematically study the process of homologous recombination as it occurs between repeated chromosomal sequences in cultured mammalian cells.


Homologous Recombination Parent Line Recombination Event Herpes Simplex Virus Type Inverted Repeat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayares, D., Spencer, R. J., Schwartz, F., Morse, B., and Kucherlapati, R. S., 1985, Homologous recombination between autonomously replicating plasmids in mammalian cells, Genetics 111: 375–388.PubMedGoogle Scholar
  2. Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S., 1978, A complete immunoglobulin gene is created by somatic recombination, Cell 15: 1–14.PubMedCrossRefGoogle Scholar
  3. Brenner, D. A., Smigocki, A. C., and Camerini-Otero, D., 1985, Effect of insertions, deletions, and double-strand breaks on homologous recombination in mouse L cells, Mol. Cell. Biol. 5: 684–691.PubMedGoogle Scholar
  4. Calabretta, B., Robberson, D. L., Barrera-Saldana, H. A., Lambrou, T. P., and Saunders, G. F., 1982, Genome instability in a region of human DNA enriched in Alu repeat sequences, Nature (London) 296: 219–225.CrossRefGoogle Scholar
  5. Capizzi, R. L., and Jameson, J. W., 1973, A table for the estimation of the spontaneous mutation rate of cells in culture, Mutat. Res. 17: 147–148.PubMedCrossRefGoogle Scholar
  6. Case, M. E., and Giles, N. H., 1958a, Evidence from tetrad analysis for both normal and aberrant recombination between allelic mutants in Neurospora crassa, Proc. Natl. Acad. Sci. U.S.A 44: 378–390.PubMedCrossRefGoogle Scholar
  7. Case, M. E., and Giles, N. H., 1958b, Recombination mechanisms at the pan-2 locus in Neurospora crassa, Cold Spring Harbor Symp. Quant. Biol. 23: 119–135.PubMedCrossRefGoogle Scholar
  8. Case, M. E., and Giles, N. H., 1964, Allelic recombination in Neurospora: Tetrad analysis of a three point cross within the pan-2 locus, Genetics 49: 529–540.PubMedGoogle Scholar
  9. Cavenee, W. K., Dryja, T. P., Phillips, R. A., Benedict, W. F., Gadbout, R., Gallie, B. L., Murphree, A. L., Strong, L. C., and White, R. L., 1983, Expression of recessive alleles by chromosomal mechanisms in retinoblastoma, Nature (London) 305: 779–784.CrossRefGoogle Scholar
  10. Chakrabarti, S., Joffe, S., and Seidman, M. M., 1985, Recombination and deletion of sequences in shuttle vector plasmids in mammalian cells, Mol. Cell. Biol. 5: 2265–2271.PubMedGoogle Scholar
  11. De Saint Vincent, B. R., and Wahl, G. M., 1983, Homologous recombination in mammalian cells mediates formation of a functional gene from two overlapping gene fragments, Proc. Natl. Acad. Sci. U.S.A. 80: 2002–2006.CrossRefGoogle Scholar
  12. Fink, G. R., and Petes, T. D., 1984, Gene conversion in the absence of reciprocal recombination, Nature (London) 310: 728–729.CrossRefGoogle Scholar
  13. Fogel, S., and Hurst, D. D., 1967, Meiotic gene conversion in yeast tetrads and the theory of recombination, Genetics 57: 445–481.Google Scholar
  14. Fogel, S., Mortimer, R., Lusnak, K., and Tavares, F., 1978, Meiotic gene conversion: A signal of the basic recombination event in yeast, Cold Spring Harbor Symp. Quant. Biol. 43: 1325–1341.CrossRefGoogle Scholar
  15. Folger, K., Thomas, K., and Capecchi, M. R., 1984, Analysis of homologous recombination in cultured mammalian cells, Cold Spring Harbor Symp. Quant. Biol. 49: 123–138.PubMedCrossRefGoogle Scholar
  16. Gonda, D. K., and Radding, C. M., 1983, By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology, Cell 34: 647–654.PubMedCrossRefGoogle Scholar
  17. Gritz, L., and Davies, J., 1983, Plasmid-encoded hygromycin B resistance: The sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae, Gene 25: 353–358.CrossRefGoogle Scholar
  18. Jackson, J. A., and Fink, G. R., 1981, Gene conversion between duplicated genetic elements in yeast, Nature (London) 292: 306–311.CrossRefGoogle Scholar
  19. Jackson, J. A., and Fink, G. R., 1985, Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae, Genetics 109: 303–332.PubMedGoogle Scholar
  20. Kaster, K. R., Burgett, S. G., and Ingola, T. D., 1984, Hygromycin B resistance as dominant selectable marker in yeast, Curr. Genet. 8: 353–358.CrossRefGoogle Scholar
  21. Kit, S., Kit, M., Qavi, H., Trkula, D., and Otsuka, H., 1983, Nucleotide sequence of the herpes simplex virus type 2 (HSV-2) thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide and its comparison with the HSV-1 thymidine kinase gene, Biochim. Biophys. Acta 741: 158–170.PubMedGoogle Scholar
  22. Klar, A. J. S., and Strathem, J. N., 1984, Resolution of recombination intermediates generated during yeast mating type switching, Nature (London) 310: 744–748.CrossRefGoogle Scholar
  23. Klein, H. L., 1984, Lack of association between intrachromosomal gene conversion and reciprocal exchange, Nature (London) 310: 748–753.CrossRefGoogle Scholar
  24. Klein, H. L., and Petes, T. D., 1981, Intrachromosomal gene conversion in yeast, Nature (London) 289: 144–148.CrossRefGoogle Scholar
  25. Kucherlapati, R. S., Eves, E. M., Song, K.-Y., Morse, B. S., and Smithies, O., 1984a, Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA, Proc. Natl. Acad. Sci. U.S.A. 81: 3153–3157.PubMedCrossRefGoogle Scholar
  26. Kucherlapati, R. S., Ayares, D., Hanneken, A., Noonan, K., Rauth, S., Spencer, J. M., Wallace, L., and Moore, P. D., 1984b, Homologous recombination in monkey cells and human cell-free extracts, Cold Spring Harbor Symp. Quant. Biol. 49: 191–197.PubMedCrossRefGoogle Scholar
  27. Kwoh, T. J., and Engler, J. A., 1984, The nucleotide sequence of the chicken thymidine kinase gene and the relationship of its predicted polypeptide to that of the vaccinia virus thymidine kinase, Nucleic Acids Res. 12: 3959–3971.PubMedCrossRefGoogle Scholar
  28. Leder, P., Battey, J., Lenoir, G., Moulding, C., Murphy, W., Potter, H., Stewart, T., and Taub, R., 1983, Translocations among antibody genes in human cancer, Science 222: 765–771.PubMedCrossRefGoogle Scholar
  29. Lin, F.-L., and Sternberg, N., 1984, Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome, Mol. Cell. Biol. 4: 852–861.PubMedGoogle Scholar
  30. Lin, F.-L., Sperle, K., and Sternberg, N., 1984a, Model for homologous recombination during transfer of DNA into mouse L cells: Role for DNA ends in the recombination process, Mol. Cell. Biol. 4: 1020–1034.PubMedGoogle Scholar
  31. Lin, F.-L., Sperle, K., and Sternberg, N., 1984b, Homologous recombination in mouse L cells, Cold Spring Harbor Symp. Quart. Biol. 49: 139–149.CrossRefGoogle Scholar
  32. Liskay, R. M., and Stachelek, J. L., 1983, Evidence for intrachromosomal gene conversion in cultured mammalian cells, Cell 35: 157–165.PubMedCrossRefGoogle Scholar
  33. Liskay, R. M., and Stachelek, J. L., 1986, Information transfer between duplicated chromosomal sequences in mammalian cells involves contiguous regions of DNA, Proc. Natl. Acad. Sci. U.S.A. 83: 1802–1806.PubMedCrossRefGoogle Scholar
  34. Liskay, R. M., Stachelek, J. L., and Letsou, A., 1984, Homologous recombination between repeated chromosomal sequences in mouse cells, Cold Spring Harbor Symp. Quant. Biol. 49: 183–189.PubMedCrossRefGoogle Scholar
  35. Liskay, R. M., Letsou, A., and Stachelek, J. L., 1986, Homology dependence for gene conversion between duplicated chromosomal sequences in mammalian cells (submitted).Google Scholar
  36. Luria, S. F., and Delbrück, M., 1943, Mutations of bacteria from virus sensitivity to virus resistance, Genetics 28: 491–511.PubMedGoogle Scholar
  37. Mulligan, R. C., and Berg., P., 1981, Selection for animal cells that express the Escherichia coli gene for xanthine-guanine phosphoribosyl transferase, Proc. Natl. Acad. Sci. U.S.A. 78: 2072–2076.PubMedCrossRefGoogle Scholar
  38. Orr-Weaver, T. L., and Szostak, J. W., 1985, Fungal recombination, Microbiol. Rev. 49: 33–58.PubMedGoogle Scholar
  39. Pellicer, A., Robins, D., Wold, B., Sweet, R., Jackson, J., Lowy, I., Roberts, J. M., Sim, G. K., Silverstein, S., and Axel, R., 1980, Altering genotype and phenotype by DNA-mediated gene transfer, Science, 209: 1414–1422.PubMedCrossRefGoogle Scholar
  40. Petes, T., and Klein, H. L., 1986, Genetic analysis of repeated yeast genes, in: The Recombination of Genetic Material ( K. Brooks Low, ed.), Academic Press, New York.Google Scholar
  41. Rao, R. N., Allen, N. E., Hobbs, J. N., Jr., Albom, W. E., Kirst, H. A., and Paschal, J. W., 1983, Genetic and enzymatic basis of hygromycin B resistance in Escherichia coli, Antimicrob. Agents Chemother. 24: 689–695.PubMedGoogle Scholar
  42. Reis, R. J. S., Lumpkin, C. K., McGill, J. R., Riabowol, K. T., and Goldstein, S., 1983, Extrachromosomal circular copies of an “inter-Alu” unstable sequence in human DNA are amplified during in vitro and in vivo ageing, Nature (London) 301: 394–398.CrossRefGoogle Scholar
  43. Roman, H., and Fabre, F., 1983, Gene conversion and associated reciprocal recombination are separable events in vegetative cells of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 80: 6912–6916.PubMedCrossRefGoogle Scholar
  44. Rubnitz, J., and Subramani, S., 1984, The minimum amount of homology required for homologous recombination in mammalian cells, Mol. Cell. Biol. 4: 2253–2258.PubMedGoogle Scholar
  45. Rubnitz, J., and Subramani, S., 1985, Rapid assay for extrachromosomal homologous recombination in monkey cells, Mol. Cell. Biol. 5: 529–537.PubMedGoogle Scholar
  46. Sakano, H., Kurosawa, Y., Weigert, M., and Tonegawa, S., 1981, Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy-chain genes, Nature (London) 290: 562–565.CrossRefGoogle Scholar
  47. Savage, E. A., and Hastings, P. J., 1981, Marker effects and the nature of the recombination event at the Hisl locus of Saccharomyces cerevisiae, Curr. Genet. 3: 37–47.CrossRefGoogle Scholar
  48. Schimke, R. T., 1982, Summary, in: Gene Amplification ( R. T. Schimke, ed.), pp. 317–333, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  49. Shapira, G., Stachelek, J. L., Letsou, A., Soodak, L., and Liskay, R. M., 1983, Novel use of synthetic oligonucleotide insertion mutants for the study of homologous recombination in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 80: 4827–4831.PubMedCrossRefGoogle Scholar
  50. Sharp, J. A., Wagner, M. J., and Summers, W. P., 1983, Transcription of herpes simplex virus genes in vivo: Overlap of a later promoter with the 3’ end of the early thymidine kinase gene, J. Virol. 46: 10–17.Google Scholar
  51. Singer, B. S., Gold, L., Gauss, P., and Doherty, D. H., 1982, Determination of the amount of homology required for recombination in bacteriophage T4, Cell 31: 25–33.PubMedCrossRefGoogle Scholar
  52. Small, J., and Scangos, G., 1983, Recombination during gene transfer into mouse cells can restore the function of deleted genes, Science 219: 174–176.PubMedCrossRefGoogle Scholar
  53. Smith, A. J. H., and Berg, P., 1984, Homologous recombination between defective neo genes in mouse 3T6 cells, Cold Spring Harbor Symp. Quant. Biol. 49: 171–181.PubMedCrossRefGoogle Scholar
  54. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S., 1985, Insertion of DNA sequences into the human 13–globin locus by homologous recombination, Nature (London) 317: 230–234.CrossRefGoogle Scholar
  55. Southern, P., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Mol. Appl. Genet. 1: 327–341.PubMedGoogle Scholar
  56. Stadler, D. R., and Towe, A. M., 1963, Recombination of allelic cysteine mutants in Neurospora, Genetics 48: 1323–1344.PubMedGoogle Scholar
  57. Subramani, S., and Rubnitz, J., 1985, Recombination events after transient infection and stable integration of DNA into mouse cells, Mol. Cell. Biol. 5: 659–666.PubMedGoogle Scholar
  58. Swain, M. A., and Galloway, D. A., 1983, Nucleotide sequence of the herpes simplex virus type 2 thymidine kinase gene, J. Virol. 46: 1045–1050.PubMedGoogle Scholar
  59. Volkert, F. C., and Young, C. S. H., 1983, The genetic analysis of recombination, Virology 125: 175–193.PubMedCrossRefGoogle Scholar
  60. Wagner, M. J., Sharp, J. A., and Summers, W. P., 1981, Nucleotide sequences of the thymidine kinase gene of herpes simplex virus type 1, Proc. Natl. Acad. Sci. U.S.A. 78: 1441–1445.PubMedCrossRefGoogle Scholar
  61. Wake, C. T., and Wilson, J. H., 1979, Simian virus 40 recombinants are produced at high frequency during infection with genetically mixed oligomeric DNA, Proc. Natl. Acad. Sci. U.S.A. 76: 2876–2880.PubMedCrossRefGoogle Scholar
  62. Wake, C. T., Vernaleone, F., and Wilson, J. H., 1985, Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells, Mol. Cell. Biol. 5: 2080–2089.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Anthea Letsou
    • 1
  • R. Michael Liskay
    • 1
  1. 1.Departments of Therapeutic Radiology and Human GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations