Gene Transfer pp 363-381 | Cite as

Homologous Recombination in Mammalian Somatic Cells

  • Raju Kucherlapati


During the last decade, gene-transfer methods using purified DNA have developed from a novelty to a powerful tool in the study of gene structure-function relationships. Though success with DNA transfer was reported as early as 1962 (Szybalska and Szybalski, 1962), widespread use of this method had to await later developments. On the basis of a method developed by Graham and van der Eb (1973), Wigler et al. (1977) and Maitland and McDougall (1977) successfully introduced the herpes simplex virus (HSV) thymidine kinase (TK) gene into mouse cells deficient in this enzyme. Wigler and colleagues were also able to identify and isolate from the HSV genome a fragment of DNA that carried the TK gene. The calcium phosphate coprecipitation method was augmented by other methods of gene transfer such as DEAE-dextran-mediated transfer (McCutchan and Pagano, 1968; Sussman and Milman, 1984; and Milman and Herzberg, 1981) microinjection into somatic cells (Anderson et al., 1980; Capecchi, 1980) or into embryos (Gordon et al., 1980). Understanding the structure of DNA and RNA viral genomes has permitted the construction of a variety of different vectors for introduction of genetic information into mammalian cells (see Chapters 5 and 6). The availability of these different methods for gene transfer makes it possible to introduce virtually any gene into mammalian cells.


Homologous Recombination Thymidine Kinase Globin Gene Monkey Cell Mitotic Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. F., Killos, L., Sanders-Haigh, L., Kretschmer, P. J., and Diaumakos, E. G., 1980, Replication and expression of thymidine kinase and human globin genes microinjected into mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 77: 5399–5403.PubMedCrossRefGoogle Scholar
  2. Ayares, D., Chekuri, L., Song, K. Y., and Kucherlapati, R., 1986, Homology requirements for intermolecular recombination in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 83 (in press).Google Scholar
  3. Ayares, D., Spencer, J., Schwartz, F., Morse, B., and Kucherlapati, R., 1985, Homologous recombination between autonomously replicating plasmids in mammalian cells, Genetics 111: 375–388.PubMedGoogle Scholar
  4. Bremner, D. A., Smigocki, A. C., and Camerini-Otero, R. D., 1985, Effects of insertions, deletions and double-strand breaks on homologous recombination in mouse L cells, Mol. Cell. Biol. 5: 684–691.Google Scholar
  5. Campbell, C. E., and Worton, R. G., 1981, Segregation of recessive phenotypes in somatic cell hybrids: Role of mitotic recombination, gene inactivation and chromosome disjunction, Mol. Cell. Biol. 1: 336–346.PubMedGoogle Scholar
  6. Capecchi, M. R., 1980, High efficiency transformation by direct microinjection of DNA into cultured mammalian cells, Cell 22: 479–488.PubMedCrossRefGoogle Scholar
  7. Cavenee, W. K., Dryza, T. P., Phillips, R., Benedict, W. F., Godbout, R., Gallie, B. L., Strong, L., Murphee, A. L., and White, R. L., 1983, Expression of recessive alleles by chromosomal mechanisms in retinoblastoma, Nature (London) 275: 617–623.Google Scholar
  8. Cavenee, W. K., Hansen, M. F., Nordenskjold, M., Kock, E., Maumenee, I., Squire, J. A., Phillips, R. A., and Gallie, B. L., 1985, Genetic origin of mutations predisposing to retino-blastoma, Science 228: 501–503.PubMedCrossRefGoogle Scholar
  9. Darby, V., and Blattner, F., 1984, Homologous recombination catalyzed by mammalian cell extracts in vitro, Science 226: 1213–1215.PubMedCrossRefGoogle Scholar
  10. De Saint Vincent, B. R., and Wahl, G. M., 1983, Homologous recombination in mammalian cells mediates the formation of a functional gene from two overlapping gene fragments, Proc. Natl. Acad. Sci. U.S.A. 80: 2002–2006.CrossRefGoogle Scholar
  11. Folger, K. R., Wong, E. A., Wahl, G., and Capecchi, M. R., 1982, Patterns of integration of DNA microinjected into cultured mammalian cells: Evidence for homologous recombination between plasmid DNA molecules, Mol. Cell. Biol. 2: 1372–1387.PubMedGoogle Scholar
  12. Folger, K. R., Thomas, K., and Capecchi, M. R., 1984, Analysis of homologous recombination in cultured mammalian cells, Cold Spring Harbor Symp. Quant. Biol. 49: 123–138.PubMedCrossRefGoogle Scholar
  13. Folger, K. R., Thomas, K., and Capecchi, M. R., 1985, Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei, Mol. Cell. Biol. 5: 52–58.Google Scholar
  14. Gluzman, Y., 1981, SV40 transformed simian cells support the replication of early SV40 mutants, Cell 23: 175–182.PubMedCrossRefGoogle Scholar
  15. Gonda, D. K., and Radding, C. M., 1983, By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology, Cell 34: 647–654.PubMedCrossRefGoogle Scholar
  16. Goodenow, R. S., Stroynowski, I., McMillan, M., Nicolson, M., Eakle, K., Sher, B. T., Davidson, N., and Hood, L., 1984, Expression of complete transplantation antigens by mammalian cells transformed with truncated class I genes, Nature (London) 301: 388–394.CrossRefGoogle Scholar
  17. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. H., 1980, Genetic transformation of mouse embryos by microinjection of purified DNA, Proc. Natl. Acad. Sci. U.S.A. 77: 7380–7384.PubMedCrossRefGoogle Scholar
  18. Graham, F. L., and van der Eb, A. J., 1973, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52: 456–467.PubMedCrossRefGoogle Scholar
  19. Hayward, W. S., Neel, B. G., and Astrin, S. M., 1981, Activation of a cellular oncogene by promoter insertion in ALV induced lymphoid leukosis, Nature (London) 290: 475–480.CrossRefGoogle Scholar
  20. Hinnen, A., Hicks, J. B., and Fink, G. R., 1978, Transformation of yeast, Proc. Natl. Acad. Sci. U.S.A. 75: 1929–1933.PubMedCrossRefGoogle Scholar
  21. Hirt, B., 1967, Selective extraction of polyoma DNA from infected mouse cell culture, J. Mol. Biol. 36: 365–369.CrossRefGoogle Scholar
  22. Hsiung, N., Roginski, R. S., Hanthron, P., Smithies, O., Kucherlapati, R., and Skoultchi, A. I., 1982, Introduction and expression of a fetal human globin gene in mouse fibroblasts, Mol. Cell. Biol. 2: 401–411.PubMedGoogle Scholar
  23. Jaenisch, R., Harbers, K., Schnieke, A., Lohler, J., Chumakov, I., Jahner, D., Gorotkop, D., and Hoffmann, E., 1983, Germline integration of Moloney murine leukemia virus at the MOV 13 locus leads to recessive lethal mutation and early embryonic death, Cell 32: 209–216.PubMedCrossRefGoogle Scholar
  24. Keene, K., and Ljungquist, S., 1984, A DNA-recombinogenic activity in human cells, Nucleic Acids Res. 12: 3057–3068.CrossRefGoogle Scholar
  25. King, W., Patel, M. D., Lobel, L. I., Goff, S. P., and Nguyen-Huu, M. C., 1985, Insertion mutagenesis of embryonal carcinoma cells by retrovirus, Science 228: 554–558.PubMedCrossRefGoogle Scholar
  26. Kucherlapati, R. S., and Skoultchi, A. I., 1985, Introduction of purified genes into mammalian cells, CRC Rev. Biochem. 16: 349–379.CrossRefGoogle Scholar
  27. Kucherlapati, R. S., Ayares, D., Hannaken, A., Noonan, K., Rauth, S., Spencer, J. M., Wallace, L., and Moore, P. D., 1984a, Homologous recombination in monkey cells and human cell-free extracts, Cold Spring Harbor Symp. Quant. Biol. 49: 191–197.PubMedCrossRefGoogle Scholar
  28. Kucherlapati, R. S., Eves, E. M., Song, K. Y., Morse, B. S., and Smithies, O., 1984b, Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA, Proc. Natl. Acad. Sci. U.S.A. 81: 3153–3157.PubMedCrossRefGoogle Scholar
  29. Kucherlapati, R. S., Spencer, J., and Moore, P. D., 1985, Homologous recombination catalyzed by human cell extracts, Mol. Cell. Biol. 5: 714–720.PubMedGoogle Scholar
  30. Lacy, E., Roberts, S., Evans, E. P., Burtenshaw, M. D., and Constantini, F. D., 1983, A foreign 3-globin gene in transgenic mice: Integration at abnormal chromosomal positions and expression in inappropriate tissues, Cell 34: 343–358.PubMedCrossRefGoogle Scholar
  31. Lin, F. L., Sperle, K., and Sternberg, N., 1984a, Homologous recombination in mouse L-cells, Cold Spring Harbor Symp. Quant. Biol. 249: 139–149.CrossRefGoogle Scholar
  32. Lin, F. L., Sperle, K., and Sternberg, N., 1984b, Model for homologous recombination during transfer of DNA into mouse L-cells: Role for DNA ends in the recombination process, Mol. Cell. Biol. 4: 1020–1034.PubMedGoogle Scholar
  33. Lin, F. L., Sperle, K., and Sternberg, N., 1985, Recombination in mouse L-cells between DNA introduced into cells and homologous chromosomal sequences, Proc. Natl. Acad. Sci. U.S.A. 82: 1391–1395.PubMedCrossRefGoogle Scholar
  34. Maitland, N., and McDougall, J. K., 1977, Biochemical transformation of mouse cells by fragments of HSV DNA, Cell 11: 233–241.PubMedCrossRefGoogle Scholar
  35. McCutchan, J. H., and Pagano, J. S., 1968, Enhancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl–dextran, J. Natl. Canc. Inst. 41: 351–357.Google Scholar
  36. Miller, C. L., and Temin, H. M., 1984, High efficiency ligation and recombination of DNA fragments by vertebrate cells, Science 220: 606–609.CrossRefGoogle Scholar
  37. Milman, G., and Herzberg, M., 1981, Efficient DNA transfection and rapid assay for thymidine kinase activity arid viral antigenic determinants, Somat. Cell Genet. 7: 161–170.PubMedCrossRefGoogle Scholar
  38. On-Weaver, T. L., and Szostak, J. W., 1983, Yeast recombination: The association between double- strand gap repair and crossing-over, Proc. Natl. Acad. Sci. U.S.A. 80: 4417–4421.CrossRefGoogle Scholar
  39. On-Weaver, T. L., and Szostak, J. W., and Rothstein, R. J., 1981, Yeast transformation: A model system for the study of recombination, Proc. Natl. Acad. Sci. U.S.A. 78: 6354–6358.CrossRefGoogle Scholar
  40. Palmiter, R. D., and Brinster, R. L., 1985, Transgenic mice, Cell 41: 343–345.PubMedCrossRefGoogle Scholar
  41. Pellicer, A., Wigler, M., Axel, R., and Silverstein, S., 1978, The transfer and stable integration of the HSV thymidine kinase gene into mouse cells, Cell 14: 133–141.PubMedCrossRefGoogle Scholar
  42. Perucho, M., Hanahan, D., Lipsich, L., and Wigler, M., 1980a, Isolation of the chicken thymidine kinase gene by plasmid rescue, Nature (London) 285: 207–210.CrossRefGoogle Scholar
  43. Perucho, M., Hanahan, D., and Wigler, M., 1980b, Genetic and physical linkage of exogenous sequences in transformed cells, Cell 22: 309–317.PubMedCrossRefGoogle Scholar
  44. Rosenstraus, M. J., and Chasin, L. A., 1978, Separation of linked markers in Chinese hamster cell hybrids—mitotic recombination is not involved, Genetics 90: 735–760.PubMedGoogle Scholar
  45. Roth, D. B., and Wilson, J. H., 1985, Relative rates of homologous and non homologous recombination in transfected DNA, Proc. Natl. Acad. Sci. U.S.A. 82: 3355–3359.PubMedCrossRefGoogle Scholar
  46. Rubnitz, J., and Subramani, S., 1984, The minimum amount of homology required for homologous recombination in mammalian cells, Mol. Cell. Biol. 4: 2253–2258.PubMedGoogle Scholar
  47. Rubnitz, J., and Subramani, S, 1985, Rapid assay for extrachromosomal homologous recombination in monkey cells, Mol. Cell. Biol. 5: 529–544.PubMedGoogle Scholar
  48. Scangos, G., Huttner, K. M., Juricek, D. K., and Ruddle, F. H., 1981, Deoxyribonucleic acid mediated gene transfer in mammalian cells: Molecular analysis of unstable transformants and their progression to stability, Mol. Cell. Biol. 1: 111–120.PubMedGoogle Scholar
  49. Schwartzberg, P., Colicelli, J., and Goff, S. P., 1985, Recombination between a defective retro-virus and homologous sequences in host DNA: Reversion by patch repair, J. Virol. 53: 719–726.PubMedGoogle Scholar
  50. Shaul, Y., Laub, O., Walker, M. D., and Rutter, W. J., 1985, Homologous recombination between defective virus and a chromosomal sequence in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 82: 2781–3784.CrossRefGoogle Scholar
  51. Singer, B. S., Gold, L., Gauss, P., and Doherty, D. H., 1982, Determination of the amount of homology required for recombination in bacteriophage T4, Cell 31: 25–33.PubMedCrossRefGoogle Scholar
  52. Small, J., and Scangos, G., 1983, Recombination during gene transfer into mouse cells can restore the function of deleted genes, Science 219: 174–176.PubMedCrossRefGoogle Scholar
  53. Smith, A. J. H., and Berg, P., 1984, Homologous recombination between defective neo genes in mouse 3T6 cells, Cold Spring Harbor Symp. Quant. Biol. 49: 171–181.PubMedCrossRefGoogle Scholar
  54. Smithies, O., Koralewski, M. A., Song, K. Y., and Kucherlapati, R. S., 1984, Homologous recombination with DNA introduced into mammalian cells, Cold Spring Harbor Symp. Quant. Biol. 49: 161–170.PubMedCrossRefGoogle Scholar
  55. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S., 1985, Insertion of DNA sequences into the human chromosomal beta globin locus via homologous recombination, Nature (London) 317: 230–234.CrossRefGoogle Scholar
  56. Song, K. Y., Chekuri, L., Rauth, S., Ehrlich, S., and Kucherlapati, R. S., 1985, Effect of double strand breaks on homologous recombination in mammalian cells and extracts, Mol. Cell. Biol. 5: 3331–3336.PubMedGoogle Scholar
  57. Southern, E., 1975, Deletion of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 503–517.PubMedCrossRefGoogle Scholar
  58. Southern, P. J., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Mol. Appl. Genet. 1: 327–341.PubMedGoogle Scholar
  59. Subramani, S., and Berg, P., 1983, Homologous and nonhomologous recombination in monkey cells, Mol. Cell. Biol. 3: 1040–1052.PubMedGoogle Scholar
  60. Subramani, S., and Rubnitz, J., 1985, Recombination events after transient infection and stable integration of DNA into mouse cells, Mol. Cell. Biol. 5: 659–666.PubMedGoogle Scholar
  61. Subramanian, K., 1979, Segments of simian virus 40 DNA spanning most of the leader sequence of the major late viral messenger RNA are dispensable, Proc. Natl. Acad. Sci. U.S.A. 76: 2556–2560.PubMedCrossRefGoogle Scholar
  62. Sussman, D. J., and Milman, G., 1984, Short-term high-efficiency expression of transfected DNA, Mol. Cell. Biol. 4: 1641–1643.PubMedGoogle Scholar
  63. Szybalska, E. H., and Syzbalski, W., 1962, Genetics of human cell lines. IV. DNA mediated heritable transformation of a biochemical trait, Proc. Natl. Acad. Sci. U.S.A. 48: 2026–2034.PubMedCrossRefGoogle Scholar
  64. Tarrant, G. M., and Holliday, R., 1977, A search for allelic recombination in Chinese hamster cell hybrids, Mol. Gen. Genet. 156: 273–279.PubMedCrossRefGoogle Scholar
  65. Thomas, C. A., 1966, Recombination of DNA molecules, Prog. Nucleic Acids Res. Mol. Biol. 5: 315–348.CrossRefGoogle Scholar
  66. Uperoft, P., Carter, B., and Kidson, C., 1980a, Analysis of recombination in mammalian cells using SV40 genome segments having homologous overlapping termini, Nucleic Acids Res. 8: 2725–2735.CrossRefGoogle Scholar
  67. Uperoft, P., Carter, B., and Kidson, C., 1980b, Mammalian cell functions mediating recombination of genetic elements, Nucleic Acids Res. 8: 5835–5844.CrossRefGoogle Scholar
  68. Volkert, F. C., and Young, C. S. H., 1983, The genetic analysis of recombination using adenovirus overlapping terminal DNA fragments, Virology 125: 175–193.PubMedCrossRefGoogle Scholar
  69. Wake, C. T., and Wilson, J. H., 1979, Simian virus 40 recombinants are produced at high frequency during infection with genetically mixed oligomeric DNA, Proc. Natl. Acad. Sci. U.S.A. 76: 2876–2880.PubMedCrossRefGoogle Scholar
  70. Wake, C. T., and Wilson, J. H., 1980, Defined oligomeric SV40 DNA: A sensitive probe of general recombination in somatic cells, Cell 21: 141–148.PubMedCrossRefGoogle Scholar
  71. Wake, C. T., Vernaleone, F., and Wilson, J. H., 1985, Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells, Mol. Cell. Biol. 5: 2080–2089.PubMedGoogle Scholar
  72. Wasmuth, J. J., and Vock Hall, L., 1984, Genetic demonstration of mitotic recombination in cultured Chinese hamster cell hybrids, Cell 36: 697–707.PubMedCrossRefGoogle Scholar
  73. Watt, V. M., Ingles, C. J., Urdea, M. S., and Rutter, W. J., 1985, Homology requirements for recombination in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 82: 4768–4772.PubMedCrossRefGoogle Scholar
  74. Wigler, M., Silverstein, S., Lee, L. S., Pellicer, A., Cheng, Y. C., and Axel, R., 1977, Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells, Cell 11: 223–232.PubMedCrossRefGoogle Scholar
  75. Wilson, J. H., Berget, P. B., and Pipas, J. M., 1982, Somatic cells efficiently join unrelated DNA segments end to end, Mol. Cell. Biol. 2:1258–1269.Google Scholar
  76. Winocour, E., and Keshet, I., 1980, Indiscriminate recombination in simian virus 40-infected monkey cells, Proc. Natl. Acad. Sci. U.S.A. 75: 1929–1933.Google Scholar
  77. Wold, B., Wigler, M., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R., 1979, Introduction and expression of a rabbit 3-globin gene in mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 76: 5684–5688.PubMedCrossRefGoogle Scholar
  78. Woychik, R. P., Stewart, T. A., Davis, L. G., D’Eustachio, P., and Leder, D., 1985, An inherited limb deformity created by insertional mutagenesis in a transgenic mouse, Nature (London) 318: 36–40.CrossRefGoogle Scholar
  79. Yoshie, O., Schmidt, H., Lengyel, P., Reddy, E. S. P., Morgan, W. R., and Weisman, S. M., 1984, Transcripts of human HLA gene fragments lacking the 5’-terminal region in transfected mouse cells. Proc. Natl. Acad. Sci. U.S.A. 81: 649–653.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Raju Kucherlapati
    • 1
  1. 1.Center for GeneticsUniversity of Illinois College of MedicineChicagoUSA

Personalised recommendations