Advertisement

Gene Transfer pp 289-323 | Cite as

Applications of Gene Transfer in the Analysis of Gene Amplification

  • G. M. Wahl
  • S. Carroll
  • P. Gaudray
  • J. Meinkoth
  • J. Ruiz

Abstract

Gene amplification is a ubiquitous process that occurs under conditions in which elevated levels of specific gene products provide a cell with a growth advantage or are required for cellular differentiation to proceed. It has been shown to mediate the resistance of prokaryotes and eukaryotes to antiproliferative agents and adverse environmental conditions (for reviews, see Anderson and Roth, 1977; Biedler et al.,1983; Cowell, 1982; Hamlin et al., 1984; Schimke, 1984; Stark and Wahl, 1984) and to allow the accumulation of structural RNAs and specific proteins during development (e.g., see Hamlin et al., 1984; Stark and Wahl, 1984). A role for gene amplification in the development or progression of malignancy has also been proposed to account for the frequent amplification and overexpression of protooncogenes in a variety of tumor cells grown in vitro or isolated from patients in vivo (for reviews, see Bishop, 1983; Schimke, 1984).

Keywords

Gene Amplification Chinese Hamster Ovary Cell Thymidine Kinase Dihydrofolate Reductase Amplification Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, F., Kellems, R., Bertino, J. R., and Schimke, R. T., 1978, Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells, J. Biol. Chem. 253: 1357–1370.PubMedGoogle Scholar
  2. Anderson, R. P., and Roth, J. R., 1977, Tandem genetic duplications in phage and bacteria, Annu. Rev. Microbiol. 31: 473–504.PubMedGoogle Scholar
  3. Anderson, P., and Roth, J., 1981, Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rDNA (rrn) cistrons, Proc. Natl. Acad. Sci. U.S.A. 78: 3113–3117.PubMedGoogle Scholar
  4. Ardeshir, F., Giulotto, E., Zeig, J., Brison, O., Liao, W., and Stark, G., 1983, Structure of amplified DNA in different Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate, Mol. Cell. Biol. 3: 2076–2088.PubMedGoogle Scholar
  5. Barsoum, J., and Varshaysky, A., 1983, Mitogenic hormones and tumour protomers greatly increase the incidence of colony-forming cells bearing amplified dihydrofoltate reductase genes, Proc. Natl. Acad. Sci. U.S.A. 80: 5330–5334.PubMedGoogle Scholar
  6. Biedler, J. L., Meyers, M. B., and Spengler, B. A., 1983, Homogeneously staining regions and double minute chromosomes, prevalent cytogenetic abnormalities of human neuroblastoma cells, Adv. Cell. Neurobiol. 4: 267–307.Google Scholar
  7. Bishop, J. M., 1983, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 52: 301–354.PubMedGoogle Scholar
  8. Biswas, D. K., and Hanes, S. D., 1982, Increased level of prolactin gene sequences in bromodeoxyuridine treated GH cells, Nucleic Acids Res. 10: 3995–4008.PubMedGoogle Scholar
  9. Biswas, D. K., Lyons, J., and Tashjian, A. H., Jr., 1977, Induction of prolactin synthesis in rat pituitary tumor cells by 5-bromodeoxyuridine, Cell 11: 431–439.PubMedGoogle Scholar
  10. Biswas, D. K., Abdulah, K. T., and Brennessel, B. A., 1979, On the mechanism of 5-bromodeoxyuridine induction of prolactin synthesis in rat pituitary tumor cells, J. Cell. Biol. 81: 1–6.PubMedGoogle Scholar
  11. Biswas, D. K., Hartigan, J. A., and Pichler, M. H., 1984, Identification of DNA sequence responsible for 5-bromodeoxyuridine-induced gene amplification, Science 225: 941–943.PubMedGoogle Scholar
  12. Brennand, J., Chinault, A. C., Konecki, D. S., Melton, D. W., and Caskey, C. T., 1982, Cloned cDNA sequences of the hypoxanthine/guanine phosphoribosyl transferase gene from a mouse neuroblastoma cell line found to have amplified genomic sequences, Proc. Natl. Acad. Sci. U.S.A. 79: 1950–1954.PubMedGoogle Scholar
  13. Chapman, A. B., Costello, M. A., Lee, F., and Ringold, G. M., 1983, Amplification and hormone-regulated expression of a mouse mammary tumor virus—Eco gpt fusion plasmid in mouse 3T6 cells, Mol. Cell. Biol. 3: 1421–1429.PubMedGoogle Scholar
  14. Christman, J. K., Gerber, M., Price, P. M., Flordellis, C., Edelman, J., and Acs, G., 1982, Amplification of expression of hepatitis B surface antigen in 3T3 cells cotransfected with a dominant-acting gene and cloned viral DNA, Proc. Natl. Sci. U.S.A. 79: 1815–1819.Google Scholar
  15. Collins, K., and Stark, G. R., 1971, Aspartate Transcarbamylase J. Biol. Chem. 246: 6599–6605.PubMedGoogle Scholar
  16. Cowell, J. K., 1982, Double minutes and homogeneously staining regions: Gene amplification in mammalian cells, Annu. Rev. Genet. 16: 21–59.PubMedGoogle Scholar
  17. Crouse, G. F., Simonsen, C. C., McEwan, R. N., and Schimke, R. T., 1982, Structure of amplified normal and variant dihydrofolate reductase genes in mouse sarcoma S180 cells, J. Biol. Chem. 257: 7887–7897.PubMedGoogle Scholar
  18. Crouse, G. F., McEwan, R. N., and Pearson, M. L., 1983, Expression and amplification of engineered mouse dihydrofolate reductase minigenes, Mol. Cell. Biol. 3: 257–266.PubMedGoogle Scholar
  19. Debatisse, M., Robert de Saint Vincent, B., and Buttin, G., 1984, Expression of several amplified genes in an adenylate-deaminase overproducing variant of Chinese hamster fibroblasts, EMBO J. 3: 3123–3127.Google Scholar
  20. DeCicco, D. V., and Spradling, A. C., 1984, Localization of a cis-acting element responsible for the developmentally regulated amplification of Drosophila chorion genes, Cell 38: 45–54.Google Scholar
  21. Eckhardt, T., 1978, A rapid method for the identification of plasmic desoxyribonucleic acid in bacteria, Plasmid 1: 584–588.PubMedGoogle Scholar
  22. Flintoff, W. E., Davidson, S. V., and Siminovitch, L., 1976, Isolation and partial characterization of three methotrexate-resistant phenotypes from Chinese hamster ovary cells, Somat. Cell Genet. 2: 245–261.PubMedGoogle Scholar
  23. Flintoff, W. F., Livingston, E., Duff, C., and Worton, R. G., 1984, Moderate-level gene amplification in methotrexate-resistant Chinese hamster ovary cells is accompanied by chromosomal translocations at or near the site of the amplified DHFR gene, Mol. Cell. Biol. 4: 69–76.PubMedGoogle Scholar
  24. Folger, K. R., Wong, E. A., Wahl, G., and Capecchi, M. R., 1982, Patterns of integration of DNA microinjected into cultured mammalian cells: Evidence for homologous recombination between injected plasmid DNA molecules, Mol. Cell. Biol. 2: 1372–1387.PubMedGoogle Scholar
  25. Fuscoe, J. C., Fenwick, R. G., Jr., Ledbetter, D. H., and Caskey, C. T., 1983, Detection and amplification of the HGPRT locus in Chinese hamster cell, Mol. Cell. Biol. 3: 1086–1096.PubMedGoogle Scholar
  26. Gardella, T., Medveczky, P., Sairenji, T., and Mulder, C., 1984, Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis, J. Virol. 50: 248–254.PubMedGoogle Scholar
  27. Gasser, C. S., and Schimke, R. T., 1986, Regulation of transfected murine dihydrofolate reductase genes (submitted).Google Scholar
  28. Gasser, C., Simonsen, C. C., Schilling, J. W., and Schimke, R. T., 1982, Expression of abbreviated mouse dihydrofolate reductase genes in cultured hamster cells, Proc. Natl. Acad. Sci. U.S.A. 79: 6522–6526.PubMedGoogle Scholar
  29. Glanville, N., 1985, Unstable expression and amplification of a transfected oncogene in confluent and subconfluent cells, Mol. Cell. Biol. 5: 1456–1464.PubMedGoogle Scholar
  30. Gorman, C. M., Moffat, L. F., and Howard, B. H., 1982, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Mol. Cell. Biol. 2: 1044–1051.PubMedGoogle Scholar
  31. Haber, D. A., Beverley, S. M., Kiely, M. L., and Schimke, R. T., 1981, Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts, J. Biol. Chem. 256: 9501–9510.PubMedGoogle Scholar
  32. Hamkalo, B. A., Farnham, P. J., Johnston, R., and Schimke, R. T., 1985, Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line, Proc. Natl. Acad. Sci. U.S.A. 82: 1126–1130.PubMedGoogle Scholar
  33. Hamlin, J. L., Milbrandt, J. D., Heintz, N. H., and Azizkhan, J. C., 1984, DNA sequence amplification in mammalian cells, Int. Rev. Cytol. 90: 31–82.PubMedGoogle Scholar
  34. Haynes, J., and Weissman, C., 1983, Constitutive, long-term production of human interferons by hamster cells containing multiple copies of a cloned interferon gene, Nucleic Acids Res. 11: 687–706.PubMedGoogle Scholar
  35. Hirt, B., 1967, Selective extraction of polyoma DNA from infected mouse cell cultures, J. Mol. Biol. 26: 365–369.PubMedGoogle Scholar
  36. Hiscott, J., Murphy, D., and Defendi, V., 1980, Amplification and rearrangement of integrated SV40 DNA sequences accompany the selection of anchorage-independent transformed mouse cells, Cell 22: 535–543.PubMedGoogle Scholar
  37. Hsu, C., Kavathas, P., and Herzenberg, L. A., 1984, Cell-surface antigens expressed on L-cells transfected with whole DNA from non-expressing and expressing cells, Nature (London) 312: 68–69.Google Scholar
  38. Huberman, J. A., and Riggs, A. D., 1968, On the mechanism of DNA replication in mammalian chromosomes, J. Mol. Biol. 32: 327–341.PubMedGoogle Scholar
  39. Jakobsson, A., Dahllof, B., Martinsson, T., and Levan, G., 1983, Transfer of methotrexate resistance with somatic cell hybridization, Hereditas 99: 293–302.PubMedGoogle Scholar
  40. Johnston, R. N., Beverley, S. M., and Schimke, R. T., 1983, Rapid spontaneous dihydrofolate reductase gene amplification shown by fluorescence-activated cell sorting, Proc. Natl. Acad. Sci. U.S.A. 80: 3711–3715.PubMedGoogle Scholar
  41. Kalfayan, L., Levine, J., Orr-Weaver, T., Parks, S., Wakimoto, B., de Cicco, D., and Spradling, A., 1985, Localization of sequences regulating Drosophila chorion gene amplification and expression, Cold Spring Harbor Symp. Quant. Biol. 50: 527–535.Google Scholar
  42. Kanotanaka, K., Higashida, H., Fukami, H., and Tanaka, T., 1982, Double minutes in mouse neuroblastoma cells and their hybrids, Cancer Genet. Cytogenet. 5: 51–62.Google Scholar
  43. Kaufman, R. J., and Schimke, R. T., 1981, Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line, Mol. Cell. Biol. 1: 1069–1076.PubMedGoogle Scholar
  44. Kaufman, R. J., and Sharp, P. A., 1982, Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene, J. Mol. Biol. 159: 601–621.PubMedGoogle Scholar
  45. Kaufman, R. J., Brown, P. C., and Schimke, R. T., 1979, Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes, Proc. Natl. Acad. Sci. U.S.A. 76: 5669–5673.PubMedGoogle Scholar
  46. Kaufman, R. J., Sharp, P. A., and Latt, S. A., 1983, Evolution of chromosomal regions containingGoogle Scholar
  47. transfected and amplified dihydrofolate reductase sequences, Mol. Cell. Biol. 3:699–711Google Scholar
  48. Kaufman, R. J., Wasley, L. C., Spiliotes, A. J., Gossels, S. D., Latt, S. A., Larsen, G. R., and Kay, R. M., 1985, Coamplification and coexpression of human tissue-type plasminogen acti-vator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells, Mol. Cell. Biol. 5: 1750–1759.Google Scholar
  49. Kavathas, P., and Herzenberg, L. A., 1983a, Amplification of a gene coding for human T-cell differentiation antigen, Nature (London) 306: 385–387.Google Scholar
  50. Kavathas, P., and Herzenberg, L. A., 1983b, Stable transformation of mouse L cells for human membrane T-cell differentiation antigens, HLA and 32-microglobulin: Selection by fluorescence-activated cell sorting, Proc. Natl. Acad. Sci. U.S.A. 80: 524–528.PubMedGoogle Scholar
  51. Kavathas, P., Sukhatme, V. P., Herzenberg, L. A., and Parues, J. R., 1984, Isolation of the gene encoding the human T-lymphocyte differentiation antigen Leu-2 (T8) by gene transfer and cDNA subtraction, Proc. Natl. Acad. Sci. U.S.A. 81: 7688–7692.PubMedGoogle Scholar
  52. Kempe, T. D., Swyryd, E. A., Bruist, M., and Stark, G. R., 1976, Stable mutants of mammalian cells that overproduce the first three enzymes of pyrimidine nucleotide biosynthesis, Cell 9: 541–550.PubMedGoogle Scholar
  53. Kohl, N. E., Kanda, N., Schreck, R. R., Bruns, G., Latt, S. A., Gilbert, F., and Alt, F. W., 1983, Transposition and amplification of oncogene-related sequences in human neuroblastomas, Cell 35: 359–367.PubMedGoogle Scholar
  54. Kucherlapati, R. S., Eves, E. M., Song, K. Y., Morse, B. S., and Smithies, O., 1984, Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA, Proc. Natl. Acad. Sci. U.S.A. 81: 3153–3157.PubMedGoogle Scholar
  55. Lau, Y., Lin, C. C., and Kan, Y. W., 1984, Amplification and expression of human a-globin genes in Chinese hamster ovary cells, Mol. Cell. Biol. 4: 1469–1475.PubMedGoogle Scholar
  56. Levine, J., and Spradling, A., 1986, DNA sequence of a 3.8 kilobase pair region controlling Drosophila chorion gene amplification, Chromosoma 92: 130.Google Scholar
  57. Liskay, R. M., and Stachelek, J. L., 1983, Evidence for intrachromosomal gene conversion in cultured mouse cells, Cell 35: 157–165.PubMedGoogle Scholar
  58. Mayo, K. E., and Palmiter, R. D., 1982, Altered regulation of the mouse metallothionein-1 gene following gene amplification or transfection, in: Gene Amplification ( R. T. Schimke, ed.), pp. 67–73, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  59. McClanahan, T., and McEntee, K., 1984, Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage, Mol. Cell. Biol. 4: 2356–2363.PubMedGoogle Scholar
  60. McClintock, B., 1984, The significance of responses of the genome to challenge, Science 226: 792–801.PubMedGoogle Scholar
  61. McCormick, F., Trahey, M., Innis, M., Dieckmann, B., and Ringold, G., 1984, Inducible expression of amplified human beta interferon genes in CHO cells, Mol. Cell. Biol. 4: 166–172.PubMedGoogle Scholar
  62. Milbrandt, J. D., Azizkhan, J. C., Greisen, K. S., and Hamlin, J. L., 1983a, Organization of a Chinese hamster ovary dihydrofolate reductase gene identified by phenotypic rescue, Mol. Cell.Biol. 3: 1266–1273.PubMedGoogle Scholar
  63. Milbrandt, J. D., Azizkhan, J. C., and Hamlin, J. L., 1983b, Amplification of a cloned Chinese hamster dihydrofolate reductase gene after transfer into a dihydrofolate reductase-deficient cell line, Mol. Cell. Biol. 3: 1274–1282.PubMedGoogle Scholar
  64. Montoya-Zavala, M., and Hamlin, J. L., 1985, Similar 150-kilobase DNA sequences are amplified in independently derived methotrexate-resistant Chinese hamster cells, Mol. Cell. Biol. 5: 619–627.PubMedGoogle Scholar
  65. Mulligan, R., and Berg, P., 1981, Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyl transferase, Proc. Natl. Acad. Sci. U.S.A. 78: 2072–2076.PubMedGoogle Scholar
  66. Murray, M. J., Kaufman, R. J., Latt, S. A., and Weinberg, R. A., 1983, Construction and use of a dominant, selectable marker: A Harvey sarcoma virus—dihydrofolate reductase chimera, Mol. Cell. Biol. 3: 32–43.PubMedGoogle Scholar
  67. Orkin, S. H., Goff, S. C., Kelley, W. N., and Daddona, P. E., 1985, Transient expression of human adenosine deaminase cDNAs: Identification of a nonfunctional clone resulting from a single amino acid substitution, Mol. Cell. Biol. 5: 762–767.PubMedGoogle Scholar
  68. Orr, W. K., Komitopoulou, K., and Kafatos, F. C., 1984, Mutants suppressing in trans chorion gene amplification in Drosophila, Proc. Natl. Acad. Sci. U.S.A. 81: 3773–3778.PubMedGoogle Scholar
  69. Osheim, Y. N., and Miller, O. L., Jr., 1983, Novel amplification and transcriptional activity of chorion genes in Drosophila melanogaster follicle cells, Cell 33: 543–553.PubMedGoogle Scholar
  70. Padgett, R. A., Wahl, G. M., and Stark, G. R., 1982, Structure of the gene for CAD, the multifunctional protein that initiates UMP synthesis in Syrian hamster cells, Mol. Cell. Biol. 2: 293–301.PubMedGoogle Scholar
  71. Paro, R., Goldberg, M. L., and Gehring, W. J., 1983, Molecular analysis of large transposable elements carrying the white locus of Drosophila-melanogaster EMBO J. 2: 835–860.Google Scholar
  72. Patterson, D., and Carnright, D. V., 1977, Biochemical genetic analysis of pyrimidine biosynthesis in mammalian cells. I. Isolation of a mutant defective in the early steps of de novo pyrimidine synthesis, Somat. Cell Genet. 3: 483–495.PubMedGoogle Scholar
  73. Pauza, C., Karels, M. J., Navre, M., and Schachman, H. K., 1982, Gene encoding Escherichia coli aspartate transcarbamylase: The pyrB-pyrl operon, Proc. Natl. Acad. Sci. U.S.A. 79: 4020–4024.PubMedGoogle Scholar
  74. Perucho, M., Hanahan, D., and Wigler, M., 1980, Genetic and physical linkage of exogenous sequences in transformed cells, Cell 22: 309–317.PubMedGoogle Scholar
  75. Ringold, G., Dieckmann, B., and Lee, F., 1981, Co-expression and amplification of dihydrofolate reductase cDNA and the Escherichia coli XGPRT gene in Chinese hamster ovary cells, J. Mol. Appl. Genet. 1: 165–175.PubMedGoogle Scholar
  76. Robert de Saint Vincent, B., and Wahl, G. M., 1983, Homologous recombination in mammalian cells mediates formation of a functional gene from two overlapping gene fragments, Proc. Natl. Acad. Sci. U.S.A. 180: 2002–2006.Google Scholar
  77. Robert de Saint Vincent, B., Delbruck, S., Eckhart, W., Meinkoth, J., Vitto, L., and Wahl, G., 1981, The cloning and reintroduction into animal cells of a functional CAD gene, a dominant amplifiable genetic marker, Cell 27: 267–277.Google Scholar
  78. Roberts, J. M., and Axel, R., 1982, Gene amplification and gene correction in somatic cells, Cell 29: 109–119.PubMedGoogle Scholar
  79. Roberts, J. M., Buck, L. B., and Axel, R., 1983, A structure for amplified DNA, Cell 33: 53–63PubMedGoogle Scholar
  80. Robins, D. M., Ripley, S., Henderson, A., and Axel, R., 1980, Transforming DNA integrates into the host chromosome, Cell 23: 29–39.Google Scholar
  81. Rubnitz, J., and Subramani, S., 1984, The minimum amount of homology required for homologous recombination in mammalian cells, Mol. Cell. Biol. 4: 2253–2258.PubMedGoogle Scholar
  82. Ruby, S. W., Szostak, J. W., and Murray, A. W., 1983, Cloning regulated yeast genes from a pool of lacZ fusions, Methods Enzymol. 101: 253–269.PubMedGoogle Scholar
  83. Ruby, S. W., Szostak, J. W., and Murray, A. W., 1983, Cloning regulated yeast genes from a pool of lacZ fusions, Methods Enzymol. 101: 253–269.PubMedGoogle Scholar
  84. Scahill, S. J., Devos, R., Van der Heyden, J., and Fiers, W., 1983, Expression and characterization of the product of a human immune interferon cDNA gene in Chinese hamster ovary cells, Proc. Natl. Acad. Sci. U.S.A. 80: 4654–4658.PubMedGoogle Scholar
  85. Schimke, R. T., 1984, Gene amplification, drug resistance, and cancer, Cancer Res. 44: 1735–1742.PubMedGoogle Scholar
  86. Schoner, R. G., and Littlefield, J. W., 1981, The organization of the dihydrofolate reductase gene of baby hamster kidney fibroblasts, Nucleic Acids Res. 9: 6001–6014.Google Scholar
  87. Shigesana, K., Stark, G. R., Maley, J. A., Niswander, L. A., and Davidson, J. N., 1985, Construction of a cDNA to the hamster CAD Gene and its application toward defining the domain for aspartate transcarbamylase, Mol. Cell. Biol. 5: 1735–1742.Google Scholar
  88. Simonsen, C. C., and Levinson, A. D., 1983, Isolation and expression of an altered mouse dihydrofolate reductase cDNA, Proc. Natl. Acad. Sci. U.S.A. 80: 2495–2499.PubMedGoogle Scholar
  89. Sirotnak, F. M., Moccio, D. M., Kelleher, L. E., and Goutas, L. J., 1981, Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo, Cancer Res. 41: 4447–4452.PubMedGoogle Scholar
  90. Southern, P. J., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Mol. Appl. Genet. 1: 327–341.PubMedGoogle Scholar
  91. Spradling, A. C., 1981, The organization and amplification of two chromosommal domains containing Drosophila chorion genes, Cell 27: 193–201.PubMedGoogle Scholar
  92. Spradling, A. C. and Mahowald, A. P., 1981, A chromosome inversion alters the pattern of specific DNA replication in Drosophila follicle cells, Cell 27: 203–209.PubMedGoogle Scholar
  93. Stallings, R. L., Munk, A. C., Longmire, J. L., Hildebrand, C. E., and Crawford, B. D., 1984, Assignment of genes encoding metallothioneins I and II to Chinese hamster chromosome 3: Evidence for the role of chromosome rearrangement in gene amplification, Mol. Cell. Biol. 4: 2932–2936.PubMedGoogle Scholar
  94. Stark, G. R., and Wahl, G. M., 1984, Gene amplification, Annu. Rev. Biochem. 53: 447–491.PubMedGoogle Scholar
  95. Subramani, S., Mulligan, R., and Berg, P., 1981, Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors, Mol. Cell. Biol. 1: 854–864.PubMedGoogle Scholar
  96. Tlsty, T. D., Albertini, A. M., and Miller, J. H., 1984, Gene amplification in the lac region of E. coli, Cell 37: 217–224.PubMedGoogle Scholar
  97. Urlaub, G., and Chasin, L. A., 1980, Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity, Proc. Natl. Acad. Sci. U.S.A. 77: 4216–4220.PubMedGoogle Scholar
  98. Urlaub, G., Kas, E., Carothers, A. M., and Chasin, L. A., 1983, Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells, Cell 33: 405–412.PubMedGoogle Scholar
  99. Varshaysky, A., 198la, On the possibility of metabolic control of replicon “misfiring”: Relationship to emergence of malignant phenotypes in mammalian cell lineages, Proc. Natl. Acad. Sci. U.S.A. 78: 3673–3677.Google Scholar
  100. Varshaysky, A., 1981b, Phorbol ester dramatically increases incidence of methotrexate-resistant mouse cells: Possible mechanisms and relevance to tumor promotion, Cell 25: 561–572.Google Scholar
  101. Wahl, G. M., Padgett, R. A., and Stark, G. R., 1979, Gene amplification causes overproduction of the first three enzymes of UMP in N-(phosphonacetyl)-L-aspartate resistant hamster cells, J. Biol. Chem. 254: 8679–8689.PubMedGoogle Scholar
  102. Wahl, G. M., Vitto, L., Padgett, R. A., and Stark, G. R., 1982, Single-copy and amplified CAD genes in Syrian hamster chromosomes localized by a highly sensitive method for in situ hybridization, Mol. Cell. Biol. 2: 308–319.PubMedGoogle Scholar
  103. Wahl, G. M., Vitto, L., and Rubnitz, J., 1983, Co-amplification of rRNA genes with CAD genes in N-(phosphonacetyl)-L-aspartate-resistant Syrian hamster cells, Mol. Cell. Biol. 3: 2066–2075.PubMedGoogle Scholar
  104. Wahl, G. M., Allen, V., Delbruck, S., Eckhart, W., Meinkoth, J., Robert de Saint Vincent, B., and Vitto, L., 1984a, Analysis of CAD gene amplification using a combined approach of molecular genetics and cytogenetics, in: Advances in Experimental Medicine and Biology, Vol. 172, Eukaryotic Cell Cultures: Basics and Applications ( R. T. Acton and J. D. Lynn, eds.), pp. 319–345, Plenum Press, New York.Google Scholar
  105. Wahl, G. M., Robert de Saint Vincent, B., and DeRose, M. L., 1984b, Effect of chromosomal position on amplification of transfected genes in animal cells, Nature (London) 307: 516–520.Google Scholar
  106. Walker, G., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Esch-erichia coli, Microbiol. Rev. 48: 60–93.PubMedGoogle Scholar
  107. Wilson, D. J., Hanes, S. D., Pichler, M. H., and Biswas, D. K., 1983a, 5-Bromodeoxyuridineinduced amplification of prolactin gene in GH cells is an extrachromosomal event, Biochemistry 22: 6077.Google Scholar
  108. Wilson, D. J., Pichler, M. H., and Biswas, D. K., 1983b, Extent of BrdUrd-induced prolactin gene amplification in GH cells, DNA 2: 237–242.PubMedGoogle Scholar
  109. Yeung, C., Ingolia, D. E., Bobonis, C., Dunbar, B. S., Riser, M. E., Siciliano, M. J., and Kellems, R. E., 1983, Selective overproduction of adenosine deaminase in cultured mouse cells, J. Biol. Chem. 258: 8338–8345.PubMedGoogle Scholar
  110. Yeung, C., Ingolia, D. E., Roth, D. B., Shoemaker, C., Al-Ubaidi, M. R., Yen, J., Ching, C., Bobonis, C., Kaufman, R. J., and Kellems, R. E., 1985, Identification of functional murine adenosine deaminase cDNA clones by complementation in Escherichia coli, J. Biol. Chem. 260:10, 299–10, 307.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. M. Wahl
    • 1
  • S. Carroll
    • 1
  • P. Gaudray
    • 1
  • J. Meinkoth
    • 1
  • J. Ruiz
    • 1
  1. 1.Gene Expression LaboratoryThe Salk InstituteLa JollaUSA

Personalised recommendations