Advertisement

Network Design Techniques

  • William J. Barksdale
Part of the Applications of Communications Theory book series (ACTH)

Abstract

In this chapter we consider a number of fundamental network design issues and present some potential techniques for solving them. The major emphasis is on the topological layout of links and nodes and the traffic flow through them. However, before getting down to specific details we shall first use a simple example to establish some basic subproblems associated with data communications network design.

Keywords

Probability Density Function Span Tree Traffic Flow Network Design Central Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Prim, Shortest connection networks and some generalizations, Bell Syst. Tech. J. 36 (6), 1389–1401 (1957).Google Scholar
  2. 2.
    R. S. Wilkov, Analysis and design of reliable computer networks, IEEE Trans. Commun. 20 (6), 660–678 (1972).CrossRefGoogle Scholar
  3. 3.
    H. Frank and I. T. Frisch, Network analysis, Sci. Am. 223, 94–103 (1970).CrossRefGoogle Scholar
  4. 4.
    F. Boesch, Introduction to basic network problems, Proc. Symp. Appl. Math. 26, 1–29 (1982).Google Scholar
  5. 5.
    D. J. Kleitman, Methods for investigating the connectivity of large graphs, IEEE Trans. Ckt. Thy. 16 (5), 232–233 (1969).MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. B. Dantzig, Reminiscences about the origins of linear programming, Oper. Res. Lett. 1 (2), 43–48 (1982).MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Sakarovitch, Notes on Linear Programming, Van Nostrand Reinhold, New York (1971).MATHGoogle Scholar
  8. 8.
    K. M. Chanady and R. A. Russell, The design of multipoint linkages in a teleprocessing tree network, IEEE Trans. Comput. 21 (10), 1062–1066 (1972).CrossRefGoogle Scholar
  9. 9.
    A. Kershenbaum and W. Chou, A unified algorithm for designing multidrop teleprocessing networks, IEEE Trans. Commun. 22 (11), 1762–1771 (1974).CrossRefGoogle Scholar
  10. 10.
    J. B. Kruskal, Jr., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc. 7, 48–50 (1956).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R. R. Boorstyn and H. Frank, Large-scale network topological optimization, IEEE Trans. Commun. 25 (1), 29–47 (1977).MATHCrossRefGoogle Scholar
  12. 12.
    H. G. Dysart and N. D. Georganas, NEWCLUST: An algorithm for the topological design of two-level, multidrop teleprocessing networks, IEEE Trans. Commun. 26 (1), 55–62 (1978).MATHCrossRefGoogle Scholar
  13. 13.
    J. R. Jackson, Jobshop-like queueing systems, Management Sci. 10 (1), 131–142 (1963).CrossRefGoogle Scholar
  14. 14.
    L. Kleinrock, Queueing Systems, Vol. II, Wiley, New York, (1976) Vol. II.MATHGoogle Scholar
  15. 15.
    L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, New Jersey (1962), Chap. 1.Google Scholar
  16. 16.
    H. Frank and I. T. Frisch, Communication, Transmission, and Transport Networks, Addison-Wesley, Reading, Massachusetts (1971), Chap. 3.Google Scholar
  17. 17.
    R. W. Floyd, Algorithm 97: Shortest path, Commun. ACM 5 (6), 345 (1962).CrossRefGoogle Scholar
  18. 18.
    E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Math. 1, 269–271 (1959).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    H. Rudin, On routing and “delta routing”: A taxonomy and performance comparison of techniques for packet-switched networks, IEEE Trans. Commun. 24 (1), 42–59, (1976).CrossRefGoogle Scholar
  20. 20.
    M. Schwartz and T. E. Stern, Routing techniques used in computer communication networks, IEEE Trans. Commun. 28 (4) (1980), pp. 539–552.CrossRefGoogle Scholar
  21. 21.
    H. Frank, I. T. Frisch, and W. Chou, Topological considerations in the design of the ARPA computer network, Proc. AFIS Spring Joint Computer Conf (1970), pp. 581–587.Google Scholar
  22. 22.
    D. R. Cox and W. L. Smith, Queues, Wiley, New York (1961).Google Scholar
  23. 23.
    J. C. Little, A proof for the queueing formula: L = AW, Oper. Res. 9, 383–387 (1961).MathSciNetMATHCrossRefGoogle Scholar

Suggested Readings

  1. G. Chartrand, Introduction to Graph Theory, reprinted by Dover, New York (1985).Google Scholar
  2. L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, New Jersey (1962).MATHGoogle Scholar
  3. L. Kleinrock, Queueing Systems Vols. I and II, Wiley, New York (1975 and 1976).MATHGoogle Scholar
  4. M. Schwartz, Computer-Communication Network Design and Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1977).MATHGoogle Scholar
  5. J. F. Hayes, Modeling and Analysis of Computer Communications Networks, Plenum Press, New York (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • William J. Barksdale
    • 1
  1. 1.South TEC AssociatesHuntsvilleUSA

Personalised recommendations