Complement-Mediated Injury

  • Michel D. Kazatchkine
  • Urs E. Nydegger


The complement system functions as part of the immune system to protect the individual from microbial infection by mediating biological reactions that in many instances are synergistic with the function of cells from the reticuloendothelial system. Both systems are found in primitive animals and have evolved to serve both specific (immune) and natural (non-antibody-dependent) host defense. Complement activation can be triggered by antigen-antibody complexes and by surfaces of microorganisms or cells that express distinct biochemical characteristics. Activation of the complement system results in opsonization of the target and its interaction with cells of the RES bearing specific receptors for bound complement components, in generation of biologically active diffusible peptides that promote the inflammatory reaction, and may result in lysis of the activating target. These finely regulated reactions also carry the potential for complement-mediated tissue injury in the host (Austen, 1978).


Systemic Lupus Erythematosus Sialic Acid Complement Activation Alternative Pathway None None 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. C., Schmalsteig, F. C., Arnaout, M. A., Kohl, S., Tosi, M. F., Dana, N., Buffone, G. J., Hughes, B. J., Brinkley, B. R., Dickey, W. D., Abramson, J. S., Springer, T. A., Boxer, L. A., Hollers, J. M., and Smith, C. W., 1984, Abnormalities of polymorphonuclear leucocyte function associated with a heritable deficiency of high molecular weight glycoproteins (gp 138): Common relationship to diminished cell adherence, J. Clin. Invest. 74: 536.PubMedGoogle Scholar
  2. Arnaout, M. A., Todd, R. F., Ill, Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R., 1983, Inhibition of phagocytosis of complement C3 or immunoglobulin G coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol), J. Clin. Invest. 72: 171.PubMedGoogle Scholar
  3. Arnaout, M. A., Hakim, R. M., Todd, R. F., III, Dana, N., and Colten, H. R., 1985, Increased expression of an adhesion-promoting surface glycoprotein in the granulocytopenia of hemo-dialysis, N. Engl. J. Med. 312: 457.PubMedGoogle Scholar
  4. Austen, K. F., 1978, Homeostasis of effector systems which can also be recruited for immunologic reactions, J. Immunol. 121: 793.PubMedGoogle Scholar
  5. Barel, M., Charriaut, C., and Frade, R., 1981, Isolation and characterization of a C3b receptor-like molecule from membranes of a human B lymphoblastoid cell line (Raji), FEBS Lett. 136: 111.PubMedGoogle Scholar
  6. Bartholomew, R. M., and Esser, A. F., 1980, Mechanism of antibody-independent activation of the first component of complement (CI) on retrovirus membranes, Biochemistry 19: 2847.PubMedGoogle Scholar
  7. Berger, M., O’Shea, J., Cross, A. S., Folks, T. M., Chused, T. M., Brown, E. J., and Frank, M. M., 1984, Human neutrophils increase expression of C3bi as well as C3b receptors upon activation, J. Clin. Invest. 74: 1566.PubMedGoogle Scholar
  8. Bhakdi, S., and Tranum-Jensen, J., 1978, Molecular nature of the complement lesion, Proc. Natl. Acad. Sci. USA 75: 5655.PubMedGoogle Scholar
  9. Bhakdi, S., and Tranum-Jensen, J., 1983, Membrane damage by complement, Biochim. Biophys. Acta 737: 343.Google Scholar
  10. Biesecker, G., Katz, S., and Koffler, D., 1981, Renal localization of the membrane attack complex in systemic lupus erythematosus nephritis, J. Exp. Med. 154: 1779.PubMedGoogle Scholar
  11. Biesecker, G., Lavin, L., Ziskind, M., and Koffler, D., 1982, Cutaneous localization of the membrane attack complex in discoid and systemic lupus erythematosus, N. Engl. J. Med. 306: 264.PubMedGoogle Scholar
  12. Campbell, R. D., Dodds, A. W., and Porter, R. R., 1980, The binding of human complement component C4 to antibody-antigen aggregates, Biochem. J. 189: 67.Google Scholar
  13. Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leucocytes, Proc. Natl. Acad. Sci. USA 75: 3943.PubMedGoogle Scholar
  14. Chenoweth, D. E., Cooper, S. W., Hugli, T. E., Steward, R. W., Blakstone, E. H., and Kirklin, J. W., 1981, Complement activation during cardiopulmonary bypass: Evidence for generation of C3a and C5a anaphylatoxins, N. Engl. J. Med. 304: 497.PubMedGoogle Scholar
  15. Cornacoff, J. B., Hebert, L. A., Smead, W. L., Van Aman, M. E., Birmingham, D. J., and Waxman, F. J., 1983, Primate erythrocyte-immune complex clearing mechanism, J. Clin. Invest. 71: 236.PubMedGoogle Scholar
  16. Cosyns, J. P., Kazatchkine, M. D., Bhakdi, S., Mandet, C., Grossetete, J., Hinglais, N., and Bariety, J., 1986, Immunohistochemical analysis of C3 cleavage fragments, factor H, and C5b-9 terminal complex of complement in de novo membranous glomerulonephritis occurring in patients with renal transplant, Clin. Nephrol, in press.Google Scholar
  17. Craddock, P. R., Hammerschmidt, D. E., White, J. G., Dalmasso, A. P., and Jacob, H. S., 1977, Complement (C5a)-induced granulocyte aggregation in vitro: A possible mechanism for complement-mediated leucostasis and leucopenia, J. Clin. Invest. 60: 260.PubMedGoogle Scholar
  18. Daha, M. R., Bloem, A. C., Bast, E. J., and Ballieux, R. E., 1984, Immunoglobulin production by human peripheral lymphocytes induced by anti-C3 receptor antibodies, J. Immunol. 132: 1197.PubMedGoogle Scholar
  19. Dahinden, C. A., Fehr, J., and Hugli, T. E., 1983, Role of cell surface contact on the kinetics of superoxide production by granulocytes, J. Clin. Invest. 72: 113.PubMedGoogle Scholar
  20. Dykman, T. R., Cole, J. L., Iida, K., and Atkinson, J. P., 1983, Polymorphism of human erythrocyte C3b/C4b receptor, Proc. Natl. Acad. Sci. USA 80: 1698.PubMedGoogle Scholar
  21. Edwards, M. S., Kasper, D. L., Jennings, H. F. Baker, C. J., and Nicholson-Weller, A., 1982, Capsular sialic acid prevents activation of the alternative complement pathway by type III group B streptococci, J. Immunol. 128: 1278.PubMedGoogle Scholar
  22. Ehlenberger, A. G., and Nussenzweig, V., 1977, The role of membrane receptors for C3b and C3d in phagocytosis, J. Exp. Med. 145: 357.PubMedGoogle Scholar
  23. Falk, R. J., Dalmasso, A. P., Kim, Y., Tsai, C. H., Scheinman, J. I., Gewurz, H., and Michael, A. F., 1983, Neoantigen of the polymerized ninth component of complement: Characterization of a monoclonal antibody and immunohistochemical localization in renal disease, J. Clin. Invest. 72: 560.PubMedGoogle Scholar
  24. Fearon, D. T., 1978, Regulation by membrane sialic acid of beta-1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway, Proc. Natl. Acad. Sci. USA 75: 1971.PubMedGoogle Scholar
  25. Fearon, D. T., 1979, Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 76: 5867.PubMedGoogle Scholar
  26. Fearon, D. T., and Austen, K. F., 1975, Properdin binding to C3b and stabilization of the C3b-dependent C3 convertase, J. Exp. Med. 142: 856.PubMedGoogle Scholar
  27. Fearon, D. T., and Austen, K. F., 1977a, Activation of the alternative complement pathway due to resistance of zymosan-bound amplification convertase to endogenous regulatory mechanisms, Proc. Natl. Acad. Sci. USA 74: 1683.PubMedGoogle Scholar
  28. Fearon, D. T., and Austen, K. F., 1977b, Activation of the alternative complement pathway with rabbit erythrocytes by circumvention of the regulatory action of endogenous control proteins, J. Exp. Med. 146: 22.PubMedGoogle Scholar
  29. Fearon, D. T., and Collins, L. A., 1983, Increased expression of C3b receptors on polymorphonuclear leucocytes induced by chemotactic factors and by purification procedures, J. Immunol. 130: 370.PubMedGoogle Scholar
  30. Fearon, D. T., and Wong, W. W., 1983, Complement ligand-receptor interactions that mediate biological responses, Annu. Rev. Immunol. 1: 243.Google Scholar
  31. Fearon, D. T., Kaneko, I., and Thomson, G., 1981, Membrane distribution and adsorptive endocytosis by C3b receptors on human polymorphonuclear leucocytes, J. Exp. Med. 153: 1615.PubMedGoogle Scholar
  32. Fingeroth, J. D., Weis, J. J., Tedder, T. F., Strominger, J. L., Biro, A., and Fearon, D. T., 1984, Epstein Barr virus receptors of human B lymphocytes is the C3d receptor, Proc. Natl. Acad. Sci. USA 81: 4510.PubMedGoogle Scholar
  33. Frank, M. M., Joiner, K. A., and Brown, E. J., 1984, Parry-thrust: Host defense and bacterial resistance to complement action, in: Progress in Immunology V ( Y. Yamamura and T. Tada, eds.), pp. 387–396, Academic Press, New York.Google Scholar
  34. Fujita, T., Takata, Y., and Tamura, N., 1981, Solubilization of immune precipitates by six isolated alternative pathway proteins, J. Exp. Med. 154: 1743.PubMedGoogle Scholar
  35. Ghebrehiwet, B., and Müller-Eberhard, H. J., 1979, C3e: An acidic fragment of human C3 with leucocytosis-inducing activity, J. Immunol. 123: 616.PubMedGoogle Scholar
  36. Gigli, I., Fujita, T., and Nussenzweig, V., 1979, Modulation of the classical pathway C3 convertase by the plasma proteins C4 binding protein and C3b inactivator, Proc. Natl. Acad. Sci. USA 76: 6596.PubMedGoogle Scholar
  37. Glovsky, M. M., Hugli, T. E., Ishizaka, T., Lichtenstein, E. M., and Erickson, B. W., 1979, Anaphylatoxin-induced histamine release with human leucocytes: Studies of C3a leucocyte binding and histamine release, J. Clin. Invest. 64: 804.PubMedGoogle Scholar
  38. Goldstein, I. M., Feit, F., and Weissmann, G., 1975, Enhancement of nitroblue tetrazolium dye reduction by leucocytes exposed to a component of complement in the absence of phagocytosis, J. Immunol. 114: 516.PubMedGoogle Scholar
  39. Götze, O., and Müller-Eberhard, H. J., 1971, The C3-activator system: An alternative pathway of complement activation, J. Exp. Med. 134: 90s.PubMedGoogle Scholar
  40. Hänsch, G. M., Hammer, C. H., Vanguri, P., and Shin, M. L., 1981, Homologous species restriction in lysis of erythrocytes by terminal complement proteins, Proc. Natl. Acad. Sci. USA 78: 5118.PubMedGoogle Scholar
  41. Hausman, M. S., Snyderman, R., and Mergenhagen, S. E., 1972, Humoral mediators of Chemotaxis of mononuclear leucocytes, J. Infect. Dis. 125: 6.Google Scholar
  42. Hensen, P. M., Zanolari, B., Schwartzman, N. A., and Hong, S. R., 1978, Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin B, J. Immunol. 121: 851.Google Scholar
  43. Hinglais, N., Kazatchkine, M. D., Bhakdi, S., Appay, M. D., Mandet, C., Grossetete, J., and Bariety, J., 1986, Immunohistochemical study of the C5b-9 complex in normal and diseased human kidneys, Kidney Inter., in press.Google Scholar
  44. Horstmann, R. D., Pangburn, M. K., and Müller-Eberhard, H. J., 1985, Active participation of factor H in the recognition function of the alternative pathway of complement, J. Immunol. 134: 1101.PubMedGoogle Scholar
  45. Hugli, T. E., 1981, The structural basis for anaphylatoxin in chemotactic functions of C3a and C5a, CRC Crit. Rev. Immunol. 1: 321.Google Scholar
  46. Hugli, T. E., and Erickson, B. W., 1977, Synthetic peptides with the biological activities and specificity of human C3a anaphylatoxin, Proc. Natl. Acad. Sci. USA 74: 1826.PubMedGoogle Scholar
  47. Iida, K., and Nussenzweig, V., 1983, Functional properties of membrane-associated complement receptor CR1, J. Immunol. 130: 1876.PubMedGoogle Scholar
  48. Iida, K., Mornaghi, R., and Nussenzweig, V., 1982, Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus, J. Exp. Med. 153: 1427.Google Scholar
  49. Iida, K., Nadler, L., and Nussenzweig, V., 1983, Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody, J. Exp. Med. 158: 1021.PubMedGoogle Scholar
  50. Inada, S., Brown, E. J., Gaither, T. A., Hammer, C. H., Takahashi, T., and Frank, M. M., 1983, C3d receptors are expressed on human monocytes after in vitro cultivation, Proc. Natl. Acad. Sci. USA 80: 2351.PubMedGoogle Scholar
  51. Jaton, J. J., 1982, Structural and biological effects of antigen binding to antibodies: A reevaluation of the data, in: Immunohemotherapy ( U. E. Nydegger, ed.), pp. 7–11, Academic Press, New York.Google Scholar
  52. Kazatchkine, M. D., and Nydegger, U. E., 1982, The human alternative complement pathway: Biology and immunopathology of activation and regulation, Prog. Allergy 30: 193.Google Scholar
  53. Kazatchkine, M. D., Fearon, D. T., and Austen, K. F., 1979a, Human alternative complement pathway: Membrane-associated sialic acid regulates the competition between B and beta-lH for cell-bound C3b, J. Immunol. 122: 75.PubMedGoogle Scholar
  54. Kazatchkine, M. D., Fearon, D. T., Silbert, J. E., and Austen, K. F., 1979b, Surface-associated heparin inhibits zymosan-induced activation of the human alternative pathway by augmenting the regulatory action of the control proteins on particle-bound C3b, J. Exp. Med. 150: 1202.PubMedGoogle Scholar
  55. Kazatchkine, M. D., Fearon, D. T., Appay, M. D., Mandet, C., and Bariety, J., 1982, Immunohistochemical study of the human glomerular C3b receptor in normal kidney and in 75 cases of renal diseases, J. Clin. Invest. 69: 900.PubMedGoogle Scholar
  56. Klaus, G. G. B., and Humphrey, J. H., 1977, The generation of memory cells. I. The role of C3 in the generation of B memory cells, Immunology 33: 31.PubMedGoogle Scholar
  57. Kolb, W. P., and Müller-Eberhard, H. J., 1975, Neoantigens of the membrane attack complex of human complement, Proc. Natl. Acad. Sci. USA 72: 1687.PubMedGoogle Scholar
  58. Lachmann, P. J., and Hobart, M. J., 1979, The genetics of the complement system, 231–260, in: Human Genetics: Possibilities and Realities, Excerpta Medica, Amsterdam.Google Scholar
  59. Lachmann, P. J., and Thompson, R. A., 1970, Reactive lysis: The complement-mediated lysis of unsensitized cells. II. The characterization of activated reactor as C5, 6 and the participation of C8 and C9, J. Exp. Med. 131: 643.PubMedGoogle Scholar
  60. Lachmann, P. J., Pangburn, M. K., and Olroyd, R. G., 1982, Breakdown of C3 after complement activation: Identification of a new fragment, C3g, using monoclonal antibodies, J. Exp. Med. 156: 205.PubMedGoogle Scholar
  61. Lambre, C., Kazatchkine, M. D., Maillet, F., and Thibon, M., 1982, Guinea pig erythrocytes after their contact with influenza virus acquire the ability to activate the human alternative complement pathway through virus-induced desialation of the cells, J. Immunol. 128: 629.PubMedGoogle Scholar
  62. Law, S. K., and Levine, R. P., 1977, Interaction between the third complement protein and cell surface macromolecules, Proc. Natl. Acad. Sci. USA 74: 2701.PubMedGoogle Scholar
  63. Law, S. K., Lichtenberg, N. A., Holcombe, F. H., and Levine, R. P., 1980, Interaction between the labile binding sites of the fourth (C4) and fifth (C5) human complement proteins and erythrocyte cell membranes, J. Immunol. 125: 634.PubMedGoogle Scholar
  64. Lublin, D. M., Rodriguez de Cordoba, S., Dykman, T. R., Rubinstein, P., and Atkinson, J. P., 1985, Loci for CR1, C4 binding protein and factor H are linked in man, Complement 1: 161a.Google Scholar
  65. Mayer, M. M., Michaels, D. W., Ramm, L. E., Shin, M. L., Whitlow, M. B., and Willoughby, J. B., 1981, Membrane damage by complement, CRC Crit. Rev. Immunol. 2: 133.Google Scholar
  66. Medof, M. E., Iida, K., Mold, C., and Nussenzweig, V., 1982, Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes, J. Exp. Med. 156: 1739.PubMedGoogle Scholar
  67. Medof, M. E., Lam, T., Prince, G. M., and Mold, C., 1983, Requirement for human red blood cells in inactivation of C3b in immune complexes and enhancement of binding to spleen cells, J. Immunol. 130: 1336.PubMedGoogle Scholar
  68. Medof, M. E., Kinoshita, T., and Nussenzweig, V., 1984, Inhibition of complement activation on the surface cells after incorporation of decay-accelerating factor (DAF) into their membranes, J. Exp. Med. 160: 1558.PubMedGoogle Scholar
  69. Miyakawa, Y., Yamada, A., Kosaka, K., Tsuda, F., and Mayumi, M., 1981, Defective immune adherence (C3b) receptor on erythrocytes from patients with systemic lupus erythematosus, Lancet 2: 493.PubMedGoogle Scholar
  70. Moore, F. D., Jr., Austen, K. F., and Fearon, D. T., 1981, IgG on mouse erythrocytes augments activation of the human alternative complement pathway by enhancing deposition of C3b, J. Immunol. 126: 1805.PubMedGoogle Scholar
  71. Morgan, E. L., Weigle, W. O., and Hugli, T. E., 1982, Anaphylatoxin-mediated regulation of the immune response. I. C3a-mediated suppression of human and murine humoral immune response, J. Exp. Med. 155: 1412.Google Scholar
  72. Morgan, E. L., Thoman, W. L., Weigle, W. O., and Hugli, T. E., 1983, Anaphylatoxin-mediated regulation of the immune response. II. C5a-mediated enhancement of human humoral and T cell-mediated immune responses, J. Immunol. 130: 1257PubMedGoogle Scholar
  73. Müller-Eberhard, H. J., 1984, The membrane attack complex, Springer Semin. Immunopathol. 7: 93.Google Scholar
  74. Müller-Eberhard, H. J., Polley, M., and Calcott, M. A., 1967, Formation and functional significance of a molecular complex derived from the second and fourth components of human complement, J. Exp. Med. 125: 359.PubMedGoogle Scholar
  75. Nadler, L. M., Stashenko, P., Hardy, R., Von Agthoven, A., Terhorst, C., and Schlossman, S. M., 1981, Characterization of a human B cell specific antigen (B2) distinct from B1, J. Immunol. 126: 1941.PubMedGoogle Scholar
  76. Nemerow, G. R., and Cooper, N. R., 1981, Isolation of Epstein Barr virus and studies of its neutralization by human IgG and complement, J. Immunol. 127: 272.PubMedGoogle Scholar
  77. Nicholson-Weiler, A., Bürge, J., Fearon, D. T., Weller, P. F., and Austen, K. F., 1982, Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system, J. Immunol. 129: 184.Google Scholar
  78. Nydegger, U. E., and Kazatchkine, M. D., 1983, The role of complement in immune clearance of blood cells, Springer Semin. Immunopathol. 6: 373.Google Scholar
  79. Nydegger, U. E., and Kazatchkine, M. D., 1986, Modulation by complement of immune complex processing in health and disease in man, Prog. Allergy in press.Google Scholar
  80. Nydegger, U. E., Fearon, D. T., and Austen, K. F., 1978, Autosomal locus regulates inverse relationship between sialic acid content and capacity of mouse erythrocytes to activate human alternative complement pathway, Proc. Natl. Acad. Sci. USA 75: 6078.PubMedGoogle Scholar
  81. Pangburn, M. K., Morrison, D. C., Schreiber, R. D., and Müller-Eberhard, H. J., 1980, Activation of the alternative complement pathway: Recognition of surface structures on activators by bound C3b, J. Immunol. 124: 977.PubMedGoogle Scholar
  82. Pangburn, M. K., Schreiber, R. D., and Müller-Eberhard, H. J., 1981, Formation of the initial C3 convertase of the alternative complement pathway: Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3, J. Exp. Med. 154: 856.PubMedGoogle Scholar
  83. Pangburn, M. K., Schreiber, R. D., and Müller-Eberhard, H. J., 1983, Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemo-globinuria, Proc. Natl. Acad. Sci. USA 80: 5430.PubMedGoogle Scholar
  84. Perlmann, H. P., Perlmann, R. D., Schreiber, R. D., and Müller-Eberhard, H. J., 1981, Interaction of target cell-bound C3bi and C3d with human lymphocyte receptors: Enhancement of antibody- mediated cellular cytotoxicity, J. Exp. Med. 153: 1592.PubMedGoogle Scholar
  85. Platts-Mills, T. A. E., and Ishizaka, K., 1974, Activation of the alternative pathway of human complement by rabbit cells, J. Immunol. 113: 348.PubMedGoogle Scholar
  86. Podack, E. R., Kolb, W. P., and Müller-Eberhard, H. J., 1977, The C5B-7 complex: Formation, isolation, properties, and subunit composition, J. Immunol. 119: 2024.PubMedGoogle Scholar
  87. Ramm, L. E., Whitlow, M. B., Koski, C. L., Shin, M. L., and Mayer, M. M., 1983, Elimination of complement channels from the plasma membrane of U937, a nucleated cell line: Temperature dependence of the elimination rate, J. Immunol. 131: 1411.PubMedGoogle Scholar
  88. Rosenfeld, S. I., Packman, C. H., and Leddy, J. P., 1983, Inhibition of the lytic action of cell-bound terminal complement components by human high density lipoproteins and apoproteins, J. Clin. Invest. 71: 795.PubMedGoogle Scholar
  89. Ross, G. D., Lambris, J. D., Cain, J. A., and Newman, S. L., 1982, Generation of three different fragments of bound C3 with purified I or serum. I. Requirements for factor H versus CR1 cofactor activity, J. Immunol. 129: 2051.PubMedGoogle Scholar
  90. Sahashi, K., Engle, A. G., and Lambert, E. H., 1980, Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis, J. Neu- ropathol. Exp. Neurol. 39: 160.Google Scholar
  91. Sanchez Madrid, F., Nagy, J. A., Robbins, E., Simon, P., and Springer, T. A., 1983, A human leucocyte differentiation antigen family with distinct subunits and a common subunit: The lymphocyte function associated (LFA1), the C3bi complement receptor (OKM1/Macl) and the p 150,95 molecule, J. Exp. Med. 158: 1785.Google Scholar
  92. Scheinkein, H. A., and Ruddy, S., 1981, The role of immunoglobulins in alternative pathway activation by zymosan, J. Immunol. 126: 7.Google Scholar
  93. Schifferli, J. A., and Peters, D. K., 1983, Complement, the immune complex lattice and the pathophysiology of complement deficiency syndromes, Lancet 2: 957.PubMedGoogle Scholar
  94. Schifferli, J. A., Woo, P., and Peters, D. K., 1982, Complement-mediated inhibition of immune precipitation. I. Role of the classical and alternative pathways, Clin. Exp. Immunol. 47: 555.Google Scholar
  95. Schopf, R. E., Hammann, K. P., Scheiner, O., Lemmel, E. M., and Dierich, M. P., 1982, Activation of human monocytes by both human beta-1H and C3b, Immunology 46: 307.PubMedGoogle Scholar
  96. Schreiber, R. D., and Müller-Eberhard, H. J., 1978, Assembly of the cytolytic alternative pathway of complement from 11 isolated plasma proteins, J. Exp. Med. 148: 1722.PubMedGoogle Scholar
  97. Schreiber, R. D., Pangburn, M. K., Bjornson, A. B., Brothers, M. A., and Müller-Eberhard, H. J., 1982, The role of C3 fragments in endocytosis and extracellular cytotoxic reactions by polymorphonuclear leucocytes, Clin. Immunol. Immunopathol. 23: 335.Google Scholar
  98. Shin, H. S., Snyderman, R., Friedman, E., Mellors, A., and Mayer, M. M., 1968, Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement, Science 162: 361.PubMedGoogle Scholar
  99. Sissons, J. G. P., Cooper, N. R., and Oldstone, M. B. A., 1979, Alternative complement pathway mediated lysis of measles virus-infected cells: Induction by IgG antibody bound to individual viral glycoproteins and comparative efficacy of F(ab’)2 and F(ab’) fragments, J. Immunol. 123: 2144.PubMedGoogle Scholar
  100. Tack, B. F., 1983, The 7-Cys-p-Glu thiolester bond in human C3, C4 and p2 macroglobulin, Springer Semin. Immunopathol 6: 259.Google Scholar
  101. Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W., 1980, Evidence for presence of an internal thioester bond in third component of human complement, Proc. Natl. Acad. Sci. USA 77: 5764.PubMedGoogle Scholar
  102. Tenner, A. J., and Cooper, N. R., 1981, Identification of types of cells in peripheral blood that bind Clq, J. Immunol 125: 1658.Google Scholar
  103. Tenner, A. J.,and Cooper, N. R., 1982, Stimulation of a human polymorphonuclear leucocyte oxidative response by the Clq subunit of the first complement component, J. Immunol. 128: 2547.Google Scholar
  104. Tonnesen, M. G., Smedly, L. A., and Henson, P. M., 1984, Neutrophil-endothelial cell interactions: Modulation of neutrophil adhesiveness induced by complement fragments C5a and C5a des Arg and formyl-methionyl-leucyl-phenylalanine in vitro, J. Clin. Invest. 74: 1581.PubMedGoogle Scholar
  105. Tschopp, J., Muller-Eberhard, H. J., and Podack, E. R., 1982, Formation of transmembrane tubules by spontaneous polymerization of hydrophilic complement protein C9, Nature (London) 298: 534.Google Scholar
  106. Van Oeveren, W., Kazatchkine, M. D., Descamps Latscha, B., Maillet, F., Fischer, E., Carpentier, A., and Wildewuur, C. R. H., 1985, Deleterious effects of cardiopulmonary bypass: A prospective study of bubble versus membrane oxygenation, J. Thorac. Cardiovasc. Surg. 89: 888.PubMedGoogle Scholar
  107. Vik, D. P., and Fearon, D. T., 1985, Neutrophils express a receptor for iC3b, C3dg and C3d that is distinct from CR1, CR2 and CR3, J. Immunol. 134: 2571.PubMedGoogle Scholar
  108. Vogt, W., Schmidt, G., Von Buttlar, B., and Dieminger, L., 1978, A new function of the activated third component of complement: Binding to C5, an essential step for C5 activation, Immunology 34: 29.PubMedGoogle Scholar
  109. Walport, M. J., Ross, G. D., Mackworth-Young, C., Watson, J. V., Lida, J., and Lachmann, P. J., 1985, Family studies of erythrocyte complement receptor type 1 levels: Reduced levels in patients with SLE are acquired, not inherited, Complement 1: 167a.Google Scholar
  110. Weiss, J. J., Tedder, T. F., and Fearon, D. T., 1984, Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes, Proc. Natl. Acad. Sci. USA 81: 885.Google Scholar
  111. Welsh, R. M., Lampert, P. W., Burner, P. A., and Oldstone, M. B. A., 1976, Antibody complement interactions with purified lymphocytic choriomeningitis virus, Virology 73: 59.PubMedGoogle Scholar
  112. Whitehead, A. S., Solomon, E., Chambers, S., Bodmer, W. F., Povey, S., and Fey, G., 1982, Assignment of the structural gene for the third component of human complement to chromosome 19, Proc. Natl. Acad. Sci. USA 79: 5021.PubMedGoogle Scholar
  113. Wilson, J. G., Wong, W. W., Schur, P. H., and Fearon, D. T., 1982, Mode of inheritance of decreased C3b receptors on erythrocytes of patients with systemic lupus erythematosus, N. Engl. J. Med. 397: 981.Google Scholar
  114. Wright, S. D., Rao, P. E., Von Voorhis, W. C., Craigmyle, L. S., Iida, K., Talle, M. A., Westberg, E. F., Goldstein, G., and Silverstein, S. C., 1983, Identification of the C3b1 receptor of human monocytes and macrophages by using monoclonal antibodies, Proc. Natl. Acad. Sci. USA 80: 5699.PubMedGoogle Scholar
  115. Ziccardi, R. J., 1982, A new role for CI inhibitor in homeostasis: Control of activation of the first component of human complement, J. Immunol 128: 2505.PubMedGoogle Scholar
  116. Ziccardi, R. J., 1983, The first component of human complement (CI): Activation and control, Springer Semin. Immunopathol 6: 213.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michel D. Kazatchkine
    • 1
    • 2
  • Urs E. Nydegger
    • 3
  1. 1.INSERM U-28ParisFrance
  2. 2.Unité d’ImmunopathologieHôpital BroussaisParisFrance
  3. 3.Central Hematology Laboratory InselspitalBernSwitzerland

Personalised recommendations