Biochemical and Biologic Problems and Pitfalls in the Prenatal Diagnosis of Inborn Errors of Metabolism

  • Barbara K. Burton
  • Henry L. Nadler


Rapid expansion of our knowledge of the biochemical basis of inherited metabolic disorders during recent years and the development of new diagnostic methods have led to rapid advances in the intrauterine diagnosis of the inborn errors of metabolism. Amniocentesis continues to be the primary tool. Cell-free amniotic fluid, noncultivated amniotic fluid cells, and cultivated amniotic fluid cells have all been utilized in the prenatal diagnosis of inborn errors of metabolism, and, given the appropriate circumstances, each may provide important information regarding the status of the fetus. The accuracy of prenatal biochemical diagnosis has generally been very high, but errors have occurred. It is of paramount importance that extreme caution be exercised in the interpretation of prenatal studies. In many instances, a decision as to whether or not a pregnancy will be continued is based on the result of a single laboratory study. The responsibility entrusted to those involved in prenatal diagnostic studies is therefore great. It is essential that everyone involved in such endeavors be thoroughly familiar with the origin and characteristics of normal amniotic fluid and amniotic fluid cells. The normal variability in any biochemical or cytological characteristic must be well defined before the results obtained from a particular analysis can be assumed to represent fetal abnormality.


Amniotic Fluid Prenatal Diagnosis Inborn Error Pompe Disease Metachromatic Leukodystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aula, P., Karjalainen, O., Teramo, K., et al., 1979, Safety and accuracy of midtrimester amniocentesis for prenatal diagnosis of genetic disorders, Ann. Clin. Res. 11:156.PubMedGoogle Scholar
  2. Barile, M. F., 1968, Mycoplasma and cell cultures, Natl. Cancer Inst. Monogr. 29:201.PubMedGoogle Scholar
  3. Barker, P. E., Mohandas, T., and Kaback, M. M., 1977, Chromosome polymorphisms in karyotypes from amniotic fluid cell cultures, Clin. Genet. 11:243.PubMedCrossRefGoogle Scholar
  4. Beaudet, A. L., and Nichols, Jr., B. L., 1976, Residual altered α-mannosidase in human mannosidosis, Biochem, Biophys. Res. Commun. 68:292.CrossRefGoogle Scholar
  5. Benn, P. A., and Hsu, L. Y. F., 1983, Maternal cell contamination of amniotic fluid cell cultures: Results of a U.S. nationwide survey, Am. J. Med. Genet. 15:297.PubMedCrossRefGoogle Scholar
  6. Benson, P. F., Blunt, S., and Brown, S. P., 1973, Amniotic cell galactokinase activity: Stimulation by galactose, Lancet 1:106.PubMedCrossRefGoogle Scholar
  7. Bixenman, H. A., Manning, M. A., Decker, C. J., et al., 1983, Maternal cell contamination mooted by amniocyte clones, Am. J. Med. Genet. 17:849.CrossRefGoogle Scholar
  8. Bladon, M. T., and Milunsky, A., 1980, Microenzymatic assays for lysosomal enzymes in primary amniotic fluid cell cultures, Clin. Chim. Acta 105:325.PubMedCrossRefGoogle Scholar
  9. Booth, C. W., and Nadler, H. L., 1974, Demonstration of the heterozygous state in Hunter’s syndrome, Pediatrics 53:396.PubMedGoogle Scholar
  10. Buchanan, P. D., Kahler, S. G., Sweetman, L., et al., 1980, Pitfalls in the prenatal diagnosis of propionic acidemia, Clin. Genet. 18:177.PubMedCrossRefGoogle Scholar
  11. Butterworth, J., Sutherland, G. R., Broadhead, D. M., et al., 1974, Lysosomal enzyme levels in human amniotic fluid cells in tissue culture. III. β-Glucosidase, N-acetyl-β-D-glucosaminidase, α-man-nosidase and acid phosphatase, Clin. Genet. 5:356.PubMedCrossRefGoogle Scholar
  12. Cathelineau, L., Pham Dinh, D., Boué, J., et al., 1981, Improved method for the antenatal diagnosis of citrullinemia, Clin. Chim. Acta 116:111.PubMedCrossRefGoogle Scholar
  13. Chettur, L., Christensen, E., and Philip, J., 1978, Stimulation of amniotic fluid cells by fibroblast growth factor, Clin. Genet. 14:223.PubMedCrossRefGoogle Scholar
  14. Cox, R. P., and Gesner, B. M., 1965, Effect of simple sugars on the morphology and growth pattern of mammalian cell cultures, Proc. Natl. Acad. Sci. USA 54:1571.PubMedCrossRefGoogle Scholar
  15. Crandall, B. F., Lebherz, T. V., Rubinstein, L., et al., 1980, Chromosome findings in 2,500 second trimester amniocenteses, Am. J. Med. Genet. 5:345.PubMedCrossRefGoogle Scholar
  16. Daniel, A., Stewart, L., Saville, T., et al., 1982, Prenatal diagnosis in 3,000 women for chromosome, X-linked, and metabolic disorders, Am. J. Med. Genet. 11:61.PubMedCrossRefGoogle Scholar
  17. Dubois, G., Turpin, J.-C., and Baumann, N., 1975, Absence of ASA activity in healthy father of a patient with metachromatic leukeodystrophy, N. Engl. J. Med. 293:302.PubMedGoogle Scholar
  18. Dubois, G., Harzer, K., and Baumann, N., 1977, Very low arylsulfatase A and cerebroside sulfatase activities in leukocytes of healthy members of a metachromatic leukodystrophy family, Am. J. Hum. Genet. 29:191.PubMedGoogle Scholar
  19. Emery, A. E. H., Burt, D., Scrimgeour, J. B., et al., 1970, Antenatal diagnosis and amino acid composition of amniotic fluid, Lancet 1:1307.CrossRefGoogle Scholar
  20. Fensom, A. H., Benson, B. F., Baker, J. E., et al., 1980, Prenatal diagnosis of argininosuccinic aciduria: Effect of mycoplasma contamination on the indirect assay for argininosuccinate lyase, Am. J. Hum. Genet. 32:761.PubMedGoogle Scholar
  21. Fleisher, L. D., Rassin, D. K., Desnick, R. J., et al., 1979, Argininosuccinic aciduria: Prenatal studies in a family at risk, Am. J. Hum. Genet. 31:439.PubMedGoogle Scholar
  22. Fleisher, L. D., Harris, D. J., Mitchell, D. A., et al., 1983, Citrullinemia: Prenatal diagnosis of an affected fetus, Am. J. Hum. Genet. 35:85.PubMedGoogle Scholar
  23. Fogh, J., and Fogh, H., 1967, Irreversibility of major chromosome changes in a mycoplasma-modified line of FL human amnion cells, Proc. Soc. Exp. Biol. Med. 126:67.Google Scholar
  24. Fogh, J., and Fogh, H., 1968, Karyotypic changes in mycoplasma-modified lines of FL human amnion cells, Proc. Soc. Exp. Biol. Med. 129:944.PubMedGoogle Scholar
  25. Fogh, J., Holmgren, N. B., and Ludovici, P. P., 1971, A review of cell culture contaminations, In Vitro 7:26.PubMedCrossRefGoogle Scholar
  26. Friedland, J., Perle, F., Saifer, A., et al., 1971, Screening for Tay-Sachs disease in utero using amniotic fluid, Proc. Soc. Exp. Biol. Med. 136:1297.PubMedGoogle Scholar
  27. Gerbie, A. B., Melancon, S. B., Ryan, C. A., et al., 1972, Cultivated epithelial-like cells and fibroblasts from amniotic fluid: Their relationship to enzymatic and cytologic analysis, Am. J. Obstet. Gynecol. 114:314.PubMedGoogle Scholar
  28. Geyer, V. H., 1970, Die herkunft der fruchtwasser-enzyme, Z. Klin. Chem. Klin. Biochem. 8:145.PubMedGoogle Scholar
  29. Golbus, M. S., Loughman, W. D., Epstein, C. J., et al., 1979, Prenatal genetic diagnoses in 3000 amniocenteses, N. Engl. J. Med. 300:157.PubMedCrossRefGoogle Scholar
  30. Golbus, M. S., Djalali, M., Klagsbrun, M., et al., 1980, Stimulation of amniotic fluid cell growth by cartilage growth factor, Am. J. Med. Genet. 6:107.PubMedCrossRefGoogle Scholar
  31. Goodman, S. I., Gallegas, D. A., Pullin, C. J., et al., 1980, Antenatal diagnosis of glutaric acidemia, Am. J. Hum. Genet. 32:695.PubMedGoogle Scholar
  32. Gospodarowicz, D., Moran, J. S., and Owashi, N. D., 1977, Effects of fibroblast growth factor on the rate of growth of amniotic fluid-derived cells, J. Clin. Endocrinol. Metab. 44:651.PubMedCrossRefGoogle Scholar
  33. Hoehn, H., Bryant, E. M., Karp, L. E., et al., 1974, Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential, Pediatr. Res. 8:746.PubMedCrossRefGoogle Scholar
  34. Hoehn, H., Bryant, E. M., Karp, L. E., et al., 1975, Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. II. Cytogenetic parameters as functions of clonal type and preparative technique, Clin. Genet. 7:29.PubMedCrossRefGoogle Scholar
  35. Hreidarsson, S. J., Thomas, G. H., Kihara, H., et al., 1983, Impaired cerebroside sulfate hydrolysis in fibroblasts of sibs with “pseudo” arylsulfatase A deficiency without metachromatic leukodystrophy, Pediatr. Res. 17:701.PubMedCrossRefGoogle Scholar
  36. Hug, G., Soukup, S., Ryan, M., et al., 1984, Rapid prenatal diagnosis of glycogen storage disease II by electron microscopy of uncultured amniotic fluid cells, N. Engl. J. Med. 310:1018.PubMedCrossRefGoogle Scholar
  37. Jacoby, L. B., Shih, V. E., Struckmeyer, C., et al., 1981, Variation in argininosuccinate synthetase activity in amniotic fluid cell cultures: Implications for prenatal diagnosis of citrullinemia, Clin. Chim. Acta 116:1.PubMedCrossRefGoogle Scholar
  38. Jakobs, C., Warner, T. G., Sweetman, L., et al., 1984, Stable isotope dilution analysis of galactitol in amniotic fluid: An accurate approach to the prenatal diagnosis of galactosemia, Pediatr. Res. 18:714.PubMedCrossRefGoogle Scholar
  39. Kaback, M. M., and Leonard, C. O., 1972, Morphological and enzymological considerations in antenatal diagnosis, in: Antenatal Diagnosis (A. Dorfman, ed.), p. 81, University of Chicago Press, Chicago.Google Scholar
  40. Kaback, M. M., Leonard, C. O., and Parmley, T. H., 1971, Intrauterine diagnosis: Comparative en-zymology of cells cultivated from maternal skin, fetal skin, and amniotic fluid cells, Pediatr. Res. 5:366.PubMedCrossRefGoogle Scholar
  41. Kihara, H., and Fluharty, A. L., 1982, Presymptomatic diagnosis: Metachromatic leukodystrophy or pseudo arylsulfatase A deficiency, J. Inherited Metab. Dis. 5:215.PubMedCrossRefGoogle Scholar
  42. Kihara, H., Ho, C.-K., Fluharty, A. L., et al., 1980, Prenatal diagnosis of metachromatic leukodystrophy in a family with pseudo arylsulfatase A deficiency by the cerebroside sulfate loading test, Pediatr. Res. 14:224.PubMedCrossRefGoogle Scholar
  43. Levine, E. M., Thomas, L., McGregor, D., et al., 1968, Altered nucleic acid metabolism in human cell cultures infected with mycoplasma, Proc. Natl. Acad. Sci. USA 60:583.PubMedCrossRefGoogle Scholar
  44. Lie, S. O., McKusick, V. A., and Neufeld, E. F., 1972, Stimulation of genetic mucopolysaccharidoses in normal human fibroblasts by alterations of pH of the medium, Proc. Natl. Acad. Sci. USA 69:2361.PubMedCrossRefGoogle Scholar
  45. Lie, S. O., Schofield, B. H., Taylor, Jr., H. A., et al., 1973, Structure and function of the lysosomes of human fibroblasts in culture: Dependence on medium pH, Pediatr. Res. 7:13.PubMedCrossRefGoogle Scholar
  46. Liebaers, L, Dinatale, P., and Neufeld, E. F., 1977, Iduronate sulfatase in amniotic fluid: An aid in the prenatal diagnosis of the Hunter syndrome, J. Pediatr. 90:423.PubMedCrossRefGoogle Scholar
  47. Litwin, J., 1974, Growth of human diploid fibroblasts in media with different amino acid composition, J. Cell Sci. 14:671.PubMedGoogle Scholar
  48. Lott, I. T., Dulaney, J. T., Milunsky, A., et al., 1976, Apparent biochemical homozygosity in two obligatory heterozygotes for metachromatic leukodystrophy, J. Pediatr. 89:438.PubMedCrossRefGoogle Scholar
  49. Marcus, M., Lavi, U., Nattenberg, S. R., et al., 1980, Selective killing of mycoplasmas from contaminated mammalian cells in cell cultures, Nature 285:659.PubMedCrossRefGoogle Scholar
  50. Massi, G., Cotumaccio, R., Orsini, G., et al., 1981, Evidence for the maternal origin of alpha1-antitrypsin in amniotic fluid, J. Pediatr. 99:961.PubMedCrossRefGoogle Scholar
  51. Matalon, R., Dorfman, A., Nadler, H. L., et al., 1970, A chemical method for the antenatal diagnosis of the mucopolysaccharidoses, Lancet 1:83.PubMedCrossRefGoogle Scholar
  52. Melancon, S. B., Lee, S. Y., and Nadler, H. L., 1971, Histidase activity in cultivated amniotic fluid cells, Science 173:627.PubMedCrossRefGoogle Scholar
  53. Milunsky, A., Littlefield, J. W., Kanker, J. N., et al., 1970, Prenatal genetic diagnosis, N. Engl. J. Med. 283:1370.PubMedCrossRefGoogle Scholar
  54. Mitra, S. K., and Blau, K., 1978, An improved determination of total glycosaminoglycans in body fluids by formation of complexes with quinacrine: Changes in amniotic fluid total glycosaminoglycans during normal pregnancies and in pregnancies at risk for mucopolysaccharidoses, Clin. Chim. Acta 89:127.PubMedCrossRefGoogle Scholar
  55. Mulivor, R. A., Mennuti, M., Zachai, E. H., et al., 1978, Prenatal diagnosis of hypophosphatasia: Genetic, biochemical and clinical studies, Am. J. Hum. Genet. 30:271.PubMedGoogle Scholar
  56. Nadler, H. L., 1969, Prenatal detection of genetic defects, J. Pediatr. 74:132.PubMedCrossRefGoogle Scholar
  57. Nadler, H. L., and Messina, A., 1969, In utero detection of type II glycogenosis (Pompe’s disease), Lancet 2:1277.PubMedCrossRefGoogle Scholar
  58. Nalder, H. L., Bigley, R. H., and Hug, G., 1970, Prenatal detection of Pompe’s disease, Lancet 2:369.Google Scholar
  59. Naylor, G., Sweetman, L., Nyhan, W. L., et al., 1980, Isotope dilution analysis of methylcitric acid in amniotic fluid for the prenatal diagnosis of propionic and methylmalonic acidemia, Clin. Chim. Acta 107:175.PubMedCrossRefGoogle Scholar
  60. Nelson, M. M., and Emery, A. E. N., 1973, Amniotic fluid cell cultures, J. Med. Genet. 10:19.PubMedCrossRefGoogle Scholar
  61. Niazi, M., Coleman, D. V., Mowbray, J. F., et al., 1979, Tissue typing amniotic fluid cells: Potential use for detection of contaminating maternal cells, J. Med. Genet. 16:21.PubMedCrossRefGoogle Scholar
  62. NICHD National Registry for Amniocentesis Study Group, 1976, Midtrimester amniocentesis for prenatal diagnosis, J. Am. Med. Assoc. 236:1471.CrossRefGoogle Scholar
  63. Niermeijer, M. F., Sachs, E. S., Jahodova, M., et al., 1976, Prenatal diagnosis of genetic disorders, J. Med. Genet. 13:182.PubMedCrossRefGoogle Scholar
  64. O’Brien, J. S., and Geiger, B., 1979, Normal adult with absent HEX A: immunoreactive HEX A is present, Am. J. Hum. Genet. 31:642.PubMedGoogle Scholar
  65. O’Brien, J. S., Tennant, L., Veath, M. L., et al., 1978, Characterization of unusual hexosaminidase A (HEX A) deficient human mutants, Am. J. Hum. Genet. 30:602.PubMedGoogle Scholar
  66. Ogita, S., Matsumoto, M., and Sugawa, T., 1972, Maternal serum for the culture of amniotic fluid cells, Acta Obstet, Gynaecol. Japonica 19:266.Google Scholar
  67. Peakman, D. C., Moreton, M. F., and Robinson, A., 1977, Prenatal diagnosis: Techniques used to help in ruling out maternal cell contamination, J. Med. Genet. 14:37.PubMedCrossRefGoogle Scholar
  68. Potier, M., Dallaire, L., and Melancon, S. B., 1975, Occurrence and properties of fetal intestinal glycosidases (disaccharidases) in human amniotic fluid, Biol. Neonate 27:141.PubMedCrossRefGoogle Scholar
  69. Rattazzi, M. C., and Davidson, R. G., 1972, Prenatal detection of Tay-Sachs disease, in: Antenatal Diagnosis (A. Dorfman, ed.), p. 207, University of Chicago Press, Chicago.Google Scholar
  70. Ryan, C. A., Lee, S. Y., and Nadler, H. L., 1972, Effect of culture conditions on enzyme activities in cultivated human fibroblasts, Exp. Cell. Res. 71:388.PubMedCrossRefGoogle Scholar
  71. Sack, J., Fisher, D. A., Hobel, C. J., et al., 1975, Tyroxine in human amniotic fluid, J. Pediatr. 87:364.PubMedCrossRefGoogle Scholar
  72. Salafsky, I. S., and Nadler, H. L., 1971a, α-l,4-Glucosidase activity in Pompe’s disease, J. Pediatr. 79:794.PubMedCrossRefGoogle Scholar
  73. Salafsky, I. S., and Nadler, H. L., 1971b, Intracellular organelles and enzymes in cell-free amniotic fluid, Am. J. Obstet, Gynecol. 111:1046.Google Scholar
  74. Schneck, L., Friedland, J., Valenti, C., et al., 1970, Prenatal diagnosis of Tay-Sachs disease, Lancet 1:582.PubMedCrossRefGoogle Scholar
  75. Schneider, E. L., Stanbridge, E. J., Epstein, C. J., et al., 1974, Mycoplasma contamination of cultured amniotic fluid cells: Potential hazard to prenatal chromosomal diagnosis, Science 184:477.PubMedCrossRefGoogle Scholar
  76. Scott, C. R., Teng, C. C., Sagerson, R. N., et al., 1972, Amino acids in amniotic fluid: Changes in concentration during the first half of pregnancy, Pediatr. Res. 6:659.PubMedCrossRefGoogle Scholar
  77. Shih, V. E., and Littlefield, J. W., 1970, Argininosuccinase activity in amniotic fluid cells, Lancet 2:45.PubMedCrossRefGoogle Scholar
  78. Shih, V. E., and Schulman, J. D., 1970, Ornithine ketoacid transaminase activity in human skin and amniotic fluid cell culture, Clin. Chim. Acta 27:73.PubMedCrossRefGoogle Scholar
  79. Stanbridge, E. J., Tischfield, J. A., and Schneider, E. L., 1975, Appearance of hypoxanthine guanine phosphoribosyl transferase activity as a consequence of mycoplasma contamination, Nature 256:329.PubMedCrossRefGoogle Scholar
  80. Sutherland, G. R., Butterworth, J., Broadhead, D. M., et al., 1974a, Lysosomal enzyme variations in thirteen cell strains cultured from one amniotic fluid, Clin. Chim. Acta 52:211.PubMedCrossRefGoogle Scholar
  81. Sutherland, G. R., Butterworth, J., Broadhead, D. M., et al., 1974b, Lysosomal enzyme levels in human amniotic fluid cells in tissue culture. II. α-Galactosidase, β-galactosidase and α-arabinosidase, Clin. Genet. 5:351.PubMedCrossRefGoogle Scholar
  82. Sutherland, G. R., Bauld, R., and Bain, A. D., 1974c, Observations on human amniotic fluid cell strains in serial culture, J. Med, Genet. 11:190.CrossRefGoogle Scholar
  83. Thomas, G. H., Raghavan, S., Kolodny, E. G., et al., 1982, Nonuniform deficiency of hexosaminidase A in tissues and fluids of two unrelated individuals, Pediatr. Res. 16:232.PubMedCrossRefGoogle Scholar
  84. Tornqvist, A., Jonassen, F., Johnson, P., et al., 1971, Studies on diamine oxidase activity during pregnancy, Acta Obstet. Gynecol. Scand. 50:79.PubMedCrossRefGoogle Scholar
  85. Tsutsumi, O., Satoh, K., Sakamoto, S., et al., 1982, Application of a galactosylceramidase microassay method to early prenatal diagnosis of Krabbe’s disease, Clin. Chim. Acta 125:265.PubMedCrossRefGoogle Scholar
  86. Uhlendorf, B. W., and Mudd, S. H., 1968, Cystathionine synthase in tissue culture derived from human skin: Enzyme defect in homocystinuria, Science 160:1007.PubMedCrossRefGoogle Scholar
  87. Welch, A. B., 1971, Selected enzyme activities and isoenzyme patterns of virus-infected cell cultures, J. Exp. Biol. Med. 137:702.Google Scholar
  88. Wendel, U., 1980, Prenatal detection of defects in propionate metabolism, Clin. Chim. Acta 108:475.PubMedCrossRefGoogle Scholar
  89. Wenger, D. A., and Riccardi, V. M., 1976, Possible misdiagnosis of Krabbe disease, J. Pediatr. 88:76.PubMedCrossRefGoogle Scholar
  90. Wood, S., 1975, The effect of environmental pH upon acid hydrolase activities of cultured human diploid fibroblasts, Exp. Cell. Res. 96:317.PubMedCrossRefGoogle Scholar
  91. Zinn, A. B., Hine, D. G., Mahoney, M. J., et al., 1982, The stable isotope dilution method for measurement of methylmalonic acid: A highly accurate approach to the prenatal diagnosis of methylmalonic acidemia, Pediatr. Res. 16:740.PubMedCrossRefGoogle Scholar

Copyright information

© Aubrey Milunsky 1986

Authors and Affiliations

  • Barbara K. Burton
    • 1
  • Henry L. Nadler
    • 2
  1. 1.Department of PediatricsBowman Gray School of Medicine of Wake Forest UniversityWinston-SalemUSA
  2. 2.Departments of Pediatrics and Obstetrics and GynecologyWayne State University School of MedicineDetroitUSA

Personalised recommendations