Prenatal Diagnosis of Miscellaneous Biochemical Disorders

  • David S. Rosenblatt
  • Rochelle Hirschhorn
  • Joseph D. Schulman
  • Aubrey Milunsky


Both disorders of folate metabolism (Rowe, 1983; Niederwieser, 1979; Erbe, 1979) and those of cobalamin metabolism (Cooper, 1976; Rosenberg, 1983) are listed in (Table I). Recent advances in the prenatal diagnosis of methylmalonic aciduria, including vitamin B12-responsive forms, have been summarized (Sweetman, 1984).


Prenatal Diagnosis Adenosine Deaminase Severe Combine Immunodeficiency Megaloblastic Anemia Purine Nucleoside Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. J., Wong, P. Rothenberg, S. P., et al., 1980, Progressive neonatal leukoencephalomyopathy due to absent methylenetetrahydrofolate reductase, responsive to treatment, Ann. Neurol. 8:211 (abstract).Google Scholar
  2. Ampola, M. G., Mahoney, M. J., Nakamura, E., et al., 1975, Prenatal therapy of a patient with vitamin B12-responsive methylmalonic acidemia, N. Engl. J. Med. 293:313.PubMedGoogle Scholar
  3. Anthony, M., and McLeay, A. C., 1976, A unique case of derangement of vitamin B12 metabolism, Proc. Aust. Assoc. Neurol. 13:61.PubMedGoogle Scholar
  4. Arakawa, T. S., 1970, Congenital defects in folate utilization, Am. J. Med. 48:594.PubMedGoogle Scholar
  5. Batshaw, M. L., Thomas, G. H., and Cohen, S. R., 1984, Treatment of the cbl B form of methylmalonic acidaemia with adenosylcobalamin, J. inherited Metab. Dis. 7:65.PubMedGoogle Scholar
  6. Baumgartner, E. R., Schweizer, K., and Wick, H., 1977, Different congenital forms of defective remethyla-tion in homocystinuria; clinical, biochemical, and morphologic studies, Pediatr. Res. 11:1015.Google Scholar
  7. Baumgartner, E. R., Wick, H., Maurer, R., et al., 1979, Congenital defect in intracellular cobalamin metabolism resulting in homocystinuria and methylmalonic aciduria. I. Case report and histopathology, Helv. Paediatr. Acta 34:465.PubMedGoogle Scholar
  8. Baumgartner, E. R., Stockstad, E. L. R., Wick, H., et al., 1985, Comparison of folic acid coenzyme distribution patterns in patients with methylenetetrahydrofolate reductase and methionine synthetase deficiencies, Pediatr. Res. 19:1288.PubMedGoogle Scholar
  9. Begley, J. A., Hall, C. A., and Scott, C. R., 1984, Absence of transcobalamin II from cord blood, Blood 63:490.PubMedGoogle Scholar
  10. Branda, R. F., Moldow, C. F., MacArthur, J. R., et al., 1978, Folate-induced remission in aplastic anemia with familial defect of cellular folate uptake, N. Engl. J. Med. 298:469.PubMedGoogle Scholar
  11. Buchanan, J. A., 1984, Fibroblast plasma membrane vesicles to study inborn errors of transport, Ph.D. thesis, Department of Biology, McGill University, p. 25.Google Scholar
  12. Burman, J. F., Mollin, D. L., Sourial, N. A., et al., 1979, Inherited lack of transcobalamin II in serum and megaloblastic anaemia: A further patient, Br. J. Haematol. 43:21.Google Scholar
  13. Carmel, R., and Goodman, S. I., 1982, Abnormal deoxyuridine suppression test in congenital methylmalonic aciduria-homocystinuria without megaloblastic anemia: Divergent biochemical and morphological bone marrow manifestations of disordered cobalamin metabolism in man, Blood 59:306.PubMedGoogle Scholar
  14. Carmel, R., Bedros, A. A., Mace, J. W., et al., 1980, Congenital methylmalonic aciduria-homocystinuria with megaloblastic anemia: Observations on response to hydroxocobalamin and on the effect of homocysteine and methionine on the deoxyuridine suppression test, Blood 55:570.PubMedGoogle Scholar
  15. Christensen, E., and Brandt, N. J., 1985, Prenatal diagnosis of 5,10-methylenetetrahydrofolate reductase deficiency, N. Engl. J. Med. 313:50.PubMedGoogle Scholar
  16. Cooper, B. A., 1976, Megaloblastic anaemia and disorders affecting utilization of vitamin B12 and folate in childhood, Clin. Haematol. 5:631.PubMedGoogle Scholar
  17. Cooper, B. A., and Rosenblatt, D. S., 1976, Folate coenzyme forms in fibroblasts from patients deficient in 5,10 methylenetetrahydrofolate reductase, Biochem. Soc. Trans. 4:921.PubMedGoogle Scholar
  18. Corbeel, L., Van den Berghe, G., Jaeken, J., et al., 1985, Congenital folate malabsorption, Eur. J. Pediatr. 143:284.PubMedGoogle Scholar
  19. Dillon, M. J., England, J. M., and Gompertz, D., 1974, Mental retardation, megaloblastic anemia, methylmalonic aciduria and abnormal homocysteine metabolism due to an inborn error in vitamin B12 metabolism, Clin. Sci. 47:43.Google Scholar
  20. Erbe, R. W., 1979, Genetic aspects of folate metabolism, in: Advances in Human Genetics (H. Harris and K. Hirschorn, eds.), p. 293, Plenum Press, New York.Google Scholar
  21. Fenton, W. A., and Rosenberg, L. E., 1981, The defect in the cbl B class of human methylmalonic acidemia: Deficiency of cob(I)alamin adenosytransferase activity in extracts of cultured fibroblasts, Biochem. Biophys. Res. Commun. 98:283.PubMedGoogle Scholar
  22. Fràter-Schröder, M., 1983, Genetic patterns of transcobalamin II and the relationships with congenital defects, Molec. Cell. Biochem. 56:5.PubMedGoogle Scholar
  23. Fràter-Schröder, M., Hirtzig, W. H., and Sacher, M., 1981, Inheritance of transcobalamin II (TC II) in two families with TC II deficiency and related immunodeficiency, J. Inherited Metab. Dis. 4:165.Google Scholar
  24. Fràter-Schröder, M., Luthy, R., Haurani, F. I., et al., 1982, Quantitative messung der neusynthese von transcobalamin II in der fifroblastenkultur—Bedeutung in der diagnose des transcobalamin-II-mangels, Schweiz. Med. Wochenschr. 109:1373.Google Scholar
  25. Fràter-Schröder, M., Porck, H. J., Erten, J., et al., 1985, Synthesis and secretion of the human vitamin B12-binding protein, transcobalamin II, by cultured skin fibroblasts and by bone marrow cells, Biochim. Biophys. Acta 845:421.PubMedGoogle Scholar
  26. Freeman, J. M., Finkelstein, J. D., and Mudd, S. H., 1975, Folate-responsive homocystinuria and “schizo-prhenia.” A defect in methylation due to deficient 5,10-methylenetetrahydofolate reductase activity, N. Engl. J. Med. 292:491.PubMedGoogle Scholar
  27. Friedman, P. A., Shia, M. A., and Wallace, J. K., 1977, A saturable high affinity binding site for transcobalamin II-vitamin B12 complexes in human placental membrane preparations, J. Clin. Invest. 59:51.PubMedGoogle Scholar
  28. Gompertz, D., Goodey, P. A., Saudubray, J. M., et al., 1974, Prenatal diagnosis of methylmalonic aciduria, Pediatrics 54:511.PubMedGoogle Scholar
  29. Goodman, S. I., Moe, P. G., Hammon, K. B., et al., 1970, Homocystinuria with methylmalonic aciduria: Two cases in a sibship, Biochem. Med. 4:500.PubMedGoogle Scholar
  30. Hakami, N., Neiman, P. E., Canellos, G. P., et al., 1971, Neonatal megaloblastic anemia due to inherited transcobalamin II deficiency in two siblings, N. Engl. J. Med. 285:1163.PubMedGoogle Scholar
  31. Hall, C. A., 1981, Congenital disorders of vitamin B12 transport and their contribution to concepts II, Yale J. Biol. Med. 54:485.PubMedGoogle Scholar
  32. Harpey, J. P., Rosenblatt, D. S., Cooper, B. A., et al., 1981, Homocystinuria caused by 5,10 meth-ylenetetrahydrofolate reductase deficiency, J. Pediatr. 98:275.PubMedGoogle Scholar
  33. Heisel, M. A., Siegel, S. E., Falk, R. E., et al., 1984, Congenital pernicious anemia: Report of seven patients, with studies of the extended family, J. Pediatr. 105:564.PubMedGoogle Scholar
  34. Hitzig, W. H., 1974, Hereditary transcobalamin II deficiency—Clinical findings in a new family, J. Pediatr. 85:622.PubMedGoogle Scholar
  35. Kanwar, Y. S., Manaligod, J. R., and Wong, P. W. K., 1976, Morphologic studies in a patient with homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency, Pediatr. Res. 10:598.PubMedGoogle Scholar
  36. Levy, H. L., Mudd, S. H., Schulman, J. D., et al., 1970, A derangement in B12 metabolism associated with homocystinuria, cystathioninuria, hypomethioninemia, and methylmalonic aciduria, Am. J. Med. 48:390.PubMedGoogle Scholar
  37. Linnell, J. C., Miranda, B., Bhatt, H. R., et al., 1983, Abnormal cobalamin metabolism in a megaloblastic child with homocystinuria, cystathioninuria, and methylmalonic aciduria, J. Inherited Metab. Dis. 6:137.Google Scholar
  38. Mahoney, M. J., Rosenberg, L. E., Lindblad, B., 1975, Prenatal diagnosis of methylmalonic aciduria, Acta Paediatr. Scand. 64:44.PubMedGoogle Scholar
  39. Matsui, S. M., Mahoney, M. J., and Rosenberg, L. E., 1983, The natural history of the inherited methylmalonic acidurias, N. Engl. J. Med. 308:857.PubMedGoogle Scholar
  40. Matthews, D. M., and Linnel, J. C., 1982, Cobalamin deficiency and related disorders in infancy and childhood, Eur. J. Pediatr. 138:6.PubMedGoogle Scholar
  41. McKusick, V. A., 1983, Mendelian Inheritance in Man, Catalogs of Autosomal Recessive and X-linked Phenotypes, 6th ed., The Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
  42. Mellman, I. H., Willard, P., and Rosenberg, L. E., 1979, Cobalamin coenzyme synthesis in normal and mutant human fibroblasts; evidence for a processing enzyme activity deficient in cbl C cells, J. Biol. Chem. 254:11847.PubMedGoogle Scholar
  43. Morrow, G., III, Schwartz, R. H., Hallock, J. A., et al., 1970, Prenatal detection of methylmalonic acidemia, J. Pediatr. 77:120.Google Scholar
  44. Morrow, G., III, Revsin, B., Lebovitz, J., et al., 1977, Detection of errors in methylmalonyl-CoA metabolism by using amniotic fluid, Clin. Chem. 23:791.PubMedGoogle Scholar
  45. Mudd, S. H., 1974, Homocystinuria and homocysteine metabolism: Selected aspects, in: Heritable Disorders of Amino Acid Metabolism (W. L. Nyham, ed.), p. 429, Wiley, New York.Google Scholar
  46. Mudd, S. H., Uhlendorf, B. W., Freeman, J. M., et al., 1972, Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity, Biochem. Biophys. Res. Commun. 46:905.PubMedGoogle Scholar
  47. Narisawa, K. Y., Wada, T., Saito, H., et al., 1977, Infantile type of homocystinuria with N 5,10-meth-yleneterahydrofolate reductase defect, Tohoku J. Exp. Med. 121:185.PubMedGoogle Scholar
  48. Niederwieser, A., 1979, Inborn errors of pterin metabolism, in: Folic Acid in Neurology, Psychiatry, and Internal Medicine (M. I. Botez and E. H. Reynolds, eds.), p. 349, Raven Press, New York.Google Scholar
  49. Poncz, M., Colman, N., Schwartz, E., et al., 1981, Therapy of congenital folate malabsorption, J. Pediatr. 98:76.PubMedGoogle Scholar
  50. Porck, H. J., Fràter-Schröder, M., Frants, K. I., et al., 1983, Genetic evidence for fetal origin of trans-cobalamin II in human cord blood, Blood 62:234.PubMedGoogle Scholar
  51. Ribes, A., Vilaseca, A., Briones, P., et al., 1984, Methylmalonic aciduria with homocystinuria, J. Inherited Met. Dis. 7:129.Google Scholar
  52. Rosenberg, L. E., 1983, Disorders of propionate and methylmalonate metabolism, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, D. S. Fredrickson, J. L. Goldstein, et al., eds.), 5th ed., p. 491, McGraw-Hill, New York.Google Scholar
  53. Rosenblatt, D. S., and Erbe, R. W., 1977, Methylenetetrahydrofolate reductase in cultured human cells. II. Studies of methylenetetrahydrofolate reductase deficiency, Pediatr. Res. 11:1141.PubMedGoogle Scholar
  54. Rosenblatt, D. S., Cooper, B. A., Lue-Shing, S., et al., 1979, Folate distribution in cultured human fibroblasts. Studies on 5,10-CH2-H4PteGlu reductase deficiency, J. Clin. Invest. 63:1019.PubMedGoogle Scholar
  55. Rosenblatt, D. S., Cooper, B. A., Pottier, A., et al., 1984, Altered vitamin B12 metabolism in fibroblasts from a patient with megaloblastic anemia and homocystinuria due to a new defect in methionine biosynthesis, J. Clin. Invest. 74:2149.PubMedGoogle Scholar
  56. Rosenblatt, D. S., Hosack, A., Matiaszuk, N. V., et al., 1985a, Defect in vitamin B12 release from lysosomes: Newly described inborn error of vitamin B12 metabolism, Science 228:1319.PubMedGoogle Scholar
  57. Rosenblatt, D. S., Cooper, B. A., Schmutz, S. M., et al., 1985b, Prenatal vitamin B12 therapy of a fetus with methylcobalamin deficiency (cobalamin E disease), Lancet 1:1127.PubMedGoogle Scholar
  58. Rowe, P. B., 1983, Inherited disorders of folate metabolism, in: The Metabolic Basis of Inherited Disease, 5th ed. (J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, et al., eds.), p. 498, McGraw-Hill, New York.Google Scholar
  59. Schuh, S., Rosenblatt, D. S., Cooper, B. A., et al., 1984, Homocystinuria and megaloblastic anemia responsive to vitamin B12 therapy; an inborn error of metabolism due to a defect in cobalamin metabolism, N. Engl. J. Med. 310:686.PubMedGoogle Scholar
  60. Seligman, P. A., Steiner, L. L., and Allen, R. H., 1980, Studies of a patient with megaloblastic anemia and an abnormal transcobalamin II, N. Engl. J. Med. 303:1209.PubMedGoogle Scholar
  61. Shinnar, S., and Singer, H. S., 1984, Cobalamin C mutation (methylmalonic aciduria and homocystinuria) in adolescence, N. Engl. J. Med. 311:451.PubMedGoogle Scholar
  62. Sweetman, L., 1984, Prenatal diagnosis of organic acidurias, J. Inherited Metab. Dis. 7:18.PubMedGoogle Scholar
  63. Sweetman, L., Naylor, G., and Ladner, T., 1982, Prenatal diagnosis of propionic and methylmalonic acidemia by stable isotope dilution analysis of methylcitric and methylmalonic acids in amniotic fluid, in: Stable Isotopes (H.-L. Schmidt, H. Forstel, and K. Heinzinger, eds.), p. 287, Elsevier, Amsterdam.Google Scholar
  64. Thomas, P. K., Hoffbrand, A. V., and Smith, I. S., 1982, Neurological involvement in hereditary transcobalamin II deficiency, J. Neurol. Neurosurg. Psych. 45:74.Google Scholar
  65. Trefz, F. K., Schmidt, H., Tauscher, B., et al., 1981, Improved prenatal diagnosis of methylmalonic acidemia: Mass fragmentography of methylmalonic acid in amniotic fluid and maternal urine, Eur. J. Pediatr. 137:261.PubMedGoogle Scholar
  66. Willard, H. F., Ambani, L. M., Hart, A. C., et al., 1976, Rapid prenatal and postnatal detection of inborn errors of propionate, methylmalonate and cobalamin metabolism: A sensitive assay using cultured cells, Hum. Genet. 34:277.PubMedGoogle Scholar
  67. Willard, H. F., Mellman, I. H., and Rosenberg, L. E., 1978, Genetic complementation among inherited deficiencies of methylmalonyl-CoA mutase activity: Evidence for a new class of human cobalamin mutant, Am. J. Hum. Genet. 30:1.PubMedGoogle Scholar
  68. Wong, P. W. K., Justice, M., Hruby, E. B., et al., 1977a, Folic acid nonresponsive homocystinuria due to methylenetetrahydrofolate reductase deficiency, Pediatrics 59:749.PubMedGoogle Scholar
  69. Wong, P. W. K., Justice, P., and Berlow, S., 1977b, Detection of homozygotes and heterozygotes with methylenetetrahydrofolate reductase deficiency, J. Lab. Clin. Med. 90:283.PubMedGoogle Scholar
  70. Zinn, A. B., Hine, D. G., Mahoney, M. J., et al., 1982, The stable isotope dilution method for measurement of methylmalonic acid: A highly accurate approach to the prenatal diagnosis of methylmalonic acidemia, Pediatr. Res. 16:740.PubMedGoogle Scholar
  71. Aitken, D. A., Kleijer, W. J., Niermeijer, M. F., et al., 1980, Prenatal detection of a probable heterozygote for ADA deficiency and severe combined immunodeficiency disease using a microradioassay, Clin. Genet. 17:293.PubMedGoogle Scholar
  72. Chen, S. H., Scott, R., and Swedberg, K. R., 1975, Heterogeneity for adenosine deaminase deficiency: Expression of the enzyme in cultured skin fibroblasts and amniotic fluid cells, Am. J. Hum. Genet. 27:46.PubMedGoogle Scholar
  73. Coleman, M. S., and Hutton, J. J., 1975, Micromethod for quantitation of adenosine deaminase activity in cells from human peripheral blood, Biochem. Med. 13:46.PubMedGoogle Scholar
  74. Durandy, A., Oury, C., Griscelli, C., et al., 1982a, Prenatal testing for inherited immune deficiencies by fetal blood sampling, Prenat. Diagn. 2:109.PubMedGoogle Scholar
  75. Durandy, A., Dumez, Y., Guy-Grand, D., et al., 1982b, Prenatal diagnosis of severe combined immunodeficiency, J. Pediatr. 101:995.PubMedGoogle Scholar
  76. Edwards, Y. H., Hopkinson, D. A., and Harris, H., 1971, Adenosine deaminase isozymes in human tissues, Ann. Hum. Genet. (Lond.) 35:207.Google Scholar
  77. Giblett, E. R., Anderson, J. E., Cohen, F., et al., 1972, Adenosine deaminase deficiency in two patients with severely impaired cellular immunity, Lancet 2:1067.PubMedGoogle Scholar
  78. Giblett, E. R., Ammann, A. J., Wara, D. W., et al., 1975, Nucleoside Phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity, Lancet 2:1010.Google Scholar
  79. Hirschhorn, R., 1975, Incidence and prenatal detection of adenosine deaminase deficiency and purine nucleoside Phosphorylase deficiency, in: Inborn Errors of Specific Immunity, p. 5, Academic Press, New York.Google Scholar
  80. Hirschhorn, R., 1986, Prenatal detection of ADA deficiency, submitted.Google Scholar
  81. Hirschhorn, R., and Beratis, N., 1973, Severe combined immunodeficiency and adenosine deaminase deficiency, Lancet 2:1217.PubMedGoogle Scholar
  82. Hirschhorn, R., and Hirschhorn, K., 1983, Immunodeficiency disorders, in: The Principles and Practice of Medical Genetics (A. E. H. Emery and D. L. Rimoin, eds.), p. 1091, Churchill Livingstone, Edinburgh.Google Scholar
  83. Hirschhorn, R., and Ratech, H., 1980, Isozymes of adenosine deaminase, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 4 (M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), p. 131, Liss, New York.Google Scholar
  84. Hirschhorn, R., Beratis, N., Rosen, F. S., et al., 1975, Adenosine deaminase deficiency in a child diagnosed prenatally, Lancet 1:73.PubMedGoogle Scholar
  85. Hirschhorn, R., Beratis, N. G., and Martiniuk, F., 1978, Adenosine deaminase: Alterations in activity and isozymes during growth of normal and genetically deficient fibroblasts, Exp. Cell Res. 117:103.PubMedGoogle Scholar
  86. Hirschhorn, R., Roegner, V., Jenkins, T., et al., 1979, Erythrocyte adenosine deaminase deficiency without immunodeficiency: Evidence for an unstable mutant enzyme, J. Clin. Invest. 64:1130.PubMedGoogle Scholar
  87. Hopkinson, D. A., Cook, P. J. L., and Harris, H., 1969, Further data on the adenosine deaminase polymorphism and a report of a new phenotype, Ann. Hum. Genet. 32:361.PubMedGoogle Scholar
  88. Kredich, N. M., and Hershfield, M. S., 1983, Immunodeficiency disease caused by adenosine deaminase deficiency and purine nucleoside Phosphorylase deficiency, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, et al., eds.), p. 1157, McGraw-Hill, New York.Google Scholar
  89. Levinsky, R. J., Linch, D. C., Beverly, C. L., et al., 1982, Prenatal exclusion of severe combined immunodeficiency, Arch. Dis. Child. 57:958.PubMedGoogle Scholar
  90. Linch, D., Beverley, P., Levinsky, R., et al., 1982a, Prenatal diagnosis of severe combined immunodeficiency, Lancet 1:1130.PubMedGoogle Scholar
  91. Linch, D. C., Beverley, C. L., Levinsky, R., et al., 1982b, Phenotype analysis of fetal blood leucocytes: Potential for prenatal diagnosis of immunodeficiency disorders, Prenat. Diagn. 2:211.PubMedGoogle Scholar
  92. Linch, D. C., Levinsky, R. J., Rodeck, C. H., et al., 1984, Prenatal diagnosis of three cases of severe combined immunodeficiency: Severe T cell deficiency during the first half of gestation in fetuses with adenosine deaminase deficiency, Clin. Exp. Immunol. 56:223.PubMedGoogle Scholar
  93. Newburger, P. E., Cohen, H. J., Rothschild, S. B., et al., 1979, Prenatal diagnosis of chronic granulomatous disease, N. Engl. J. Med. 300:178.PubMedGoogle Scholar
  94. Orkin, S. H., Daddona, P. E., Shewach, D. S., et al., 1983, Molecular cloning of human adenosine deaminase gene sequences, J. Biol. Chem. 258:12753.PubMedGoogle Scholar
  95. Pollack, M. S., Maurer, D. H., LeBlanc, D., et al., 1983, HLA typing of amniotic fluid cells for the prenatal determination therapeutic transplantation options for a fetus affected with adenosine deaminase deficiency, Transplantation 36:336.PubMedGoogle Scholar
  96. Schmalstieg, F. C., Mills, G. C., Tsuda, H., et al., 1983, Severe combined immunodeficiency in a child with a healthy adenosine deaminase deficient mother, Pediatr. Res. 17:935.PubMedGoogle Scholar
  97. Stout, J. T., Jackson, L. G., and Caskey, C. T., 1985, First trimester diagnosis of Lesch-Nyhan syndrome: Applications to other disorders of purine metabolism, Prenat. Diagn. 5:183.PubMedGoogle Scholar
  98. Touraine, J. L., Betuel, H., Souillet, G., 1978, Combined immunodeficiency disease associated with absence of cell surface HLA-A and B antigens, J. Pediatr. 93:47.PubMedGoogle Scholar
  99. Uitendaal, M. P., de Bruyn, C. H. M. M., Oei, J. T., et al., 1978, Fluctuating adenosine deaminase activities in cultured fibroblasts, Biochem. Med. 20:54.Google Scholar
  100. Valerio, D., Duyvvesteyn, M. G. C., Meera Khan, P., et al., 1983, Isolation of cDNA clones for human adenosine deaminase, Gene 25:231.PubMedGoogle Scholar
  101. Wiginton, D. A., Adrian, G. S., Friedman, R. L., et al., 1983, Cloning of cDNA sequences of human adenosine deaminase, Proc. Natl. Acad. Sci. USA 80:7481.PubMedGoogle Scholar
  102. Ziegler, J. B., Van Der Weyden, M. B., Lee, C. H., et al., 1981, Prenatal diagnosis for adenosine deaminase deficiency, J. Med. Genet. 18:154.PubMedGoogle Scholar
  103. Aaron, K., Goldman, H., and Scriver, C. R., 1971, Cystinosis; new observations: 1. Adolescent (type III) form. 2. Correction of phenotypes in vitro with dithiothreitol, in: Inherited Disorders of Sulphur Metabolism (N. A. J. Carson and D. N. Raine, eds.), p. 150, Churchill Livingstone, Edinburgh.Google Scholar
  104. Advisory Committee to the Renal Transplant Registry, 1975, Renal transplantation in congenital and metabolic diseases: A report from the ASC/NIH Renal Transplant Registry, 7. Arn. Med. Assoc. 232:148.Google Scholar
  105. Bickel, H., 1955, Die Entwicklung der biochemischen Lasion bei der Lignac-Franconischen Krankheit, Helv. Paediatr. Acta 10:259.PubMedGoogle Scholar
  106. Brubaker, R. F., Wong, V. G., Schulman, J. D., et al., 1970, Benign cystinosis: The clinical biochemical and morphologic findings in a family with two affected siblings, Am. J. Med. 49:546.PubMedGoogle Scholar
  107. Gahl, W. A., Teitze, F., Bashan, N., et al., 1982a, Defective cystine exodus from isolated lysosome-rich fractions of cystinotic leukocytes, J. Biol. Chem. 257:9570.PubMedGoogle Scholar
  108. Gahl, W. A., Bashan, N., Tietze, F., et al., 1982b, Lysosomal cystine transport is defective in cystinosis, Science 217:1263.PubMedGoogle Scholar
  109. Gahl, W. A., Tietze, F., Bashan, N., et al., 1983, Characteristics of cystine counter-transport in normal and cystinotic lysosome-rich leukocyte granular fractions, Biochem J. 216:393.PubMedGoogle Scholar
  110. Gahl, W. A., Bashan, N., Tietze, F., et al., 1984, Lysosomal cystine counter-transport in heterozygotes for cystinosis, Am. J. Hum. Genet. 36:277.PubMedGoogle Scholar
  111. Goldman, H., Scriver, C. R., Aaron, K., et al., 1970, Use of dithiothreitol to correct cystine storage in cultured cystinotic fibroblasts, Lancet 1:811.PubMedGoogle Scholar
  112. Goldman, H., Scriver, C. R., Aaron, K., et al., 1971, Adolescent cystinosis: Comparisons with infantile and adult forms, Pediatrics 47:979.PubMedGoogle Scholar
  113. Goldman, H., DePage-Brigger, D., Delvin, E., et al., 1974, Long-term use of oral dithiothreitol (DTT) in nephropathic cystinosis, Clin. Res. 22:740A.Google Scholar
  114. Hooft, C., Carton, D., DeSchrijver, F., et al., 1971, Juvenile cystinosis in two siblings, in: Inherited Disorders of Sulphur Metabolism (N. A. J. Carson and D. N. Raine, eds.), p. 141, Churchill Livingstone, Edinburgh.Google Scholar
  115. Kaye, C. I., and Nadler, H. L., 1976, Transport of L-cystine by cultivated skin fibroblasts of normal subjects and patients with cystinosis, Pediatr. Res. 10:637.PubMedGoogle Scholar
  116. Kroll, W. A., and Lichte, K.-H., 1973, Cystinosis: A review of the different forms and of recent advances, Humangenetik 20:75.PubMedGoogle Scholar
  117. Kroll, W. A., and Schneider, J. A., 1974, Decrease in free cystine content of cultured cystinotic fibroblasts by ascorbic acid, Science 86:1040.Google Scholar
  118. Kroll, W. A., Lichte, K.-H., Lutz, P., et al., 1973, Cystinosis: Quantitative assay of cystine accumulation of homozygotes and heterozygotes, Humangenetik 17:337.PubMedGoogle Scholar
  119. Lietman, P. S., Frazier, P. D., Wong, V. G., et al., 1966, Adult cystinosis—A benign disorder, Am. J. Med. 40:511.PubMedGoogle Scholar
  120. Oshima, R. G., Willis, R. C., Furlong, C. E., et al., 1974, Binding assays for amino acids, J. Biol. Chem. 249:6033.PubMedGoogle Scholar
  121. Oshima, R. G., Rhead, W. J., Theone, J. G., et al., 1976, Cystine metabolism in human fibroblasts: Comparison of normal, cystinotic, and γ-glutamylcysteine synthetase-deficient cells, J. Biol. Chem. 251:4287.PubMedGoogle Scholar
  122. Pittman, G., Deodhar, S., Schulman, J. D., et al., 1971, Nephropathic cystinosis in a young adult—Report of a case, Lab. Invest. 24:442Google Scholar
  123. Schneider, J. A., Bradley, K., and Seegmiller, J. E., 1967a, Increased cystine in leukocytes from individuals homozygous and heterozygous for cystinosis, Science 157:1321.PubMedGoogle Scholar
  124. Schneider, J. A., Rosenbloom, F. M., Bradley, K. H., et al., 1967b, Increased free cystine content of fibroblasts cultured from patients with cystinosis, Biochem. Biophys. Res. Commun. 29:527.PubMedGoogle Scholar
  125. Schneider, J. A., Bradley, K. G., and Seegmiller, J. E., 1968a, Transport and intracellular fate of cysteine-35S in leukocytes from normal subjects and patients with cystinosis, Pediatr. Res. 2:441.PubMedGoogle Scholar
  126. Schneider, J. A., Wong, V., Bradley, K., et al., 1968b, Biochemical comparisons of the adult and childhood forms of cystinosis, N. Engl. J. Med. 279:1253.PubMedGoogle Scholar
  127. Schneider, J. A., Wong, V., and Seegmiller, J. E., 1969, The early diagnosis of cystinosis, J. Pediatr. 74:114.PubMedGoogle Scholar
  128. Schneider, J. A., Verroust, F. M., Kroll, W. A., et al., 1974, Prenatal diagnosis of cystinosis, N. Engl. J. Med. 290:878.PubMedGoogle Scholar
  129. Schneider, J. A., Schulman, J. D., and Seegmiller, J. E., 1978, Cystinosis and the Fanconi syndrome, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), p. 1660, McGraw-Hill, New York.Google Scholar
  130. Schulman, J. D., and Bradley, K. H., 1970, The metabolism of amino acids, peptides, and disulfides in lysosomes of fibroblasts cultured from normal individuals and those with cystinosis, J. Exp. Med. 132:1090.PubMedGoogle Scholar
  131. Schulman, J. D., Fujimoto, W. Y., Bradley, K. H., et al., 1970a, Identification of heterozygous genotype for cystinosis in utero using a new pulse-labeling technique: Preliminary report, J. Pediatr. 77:468.PubMedGoogle Scholar
  132. Schulman, J. D., Wong, V. G., Kuwabara, T., et al., 1970b, Intracellular cystine content of leukocyte populations in cystinosis, Arch. Intern. Med. 125:660.PubMedGoogle Scholar
  133. States, B., Blazer, B., Harris, D., et al., 1975, Prenatal diagnosis of cystinosis, J. Pediatr. 87:558.PubMedGoogle Scholar
  134. Thoene, J. G., Oshima, R. G., Crawhall, J. C., et al., 1976, Intracellular cystine depletion by amniothiols in vitro and in vivo, J. Clin. Invest. 58:180.PubMedGoogle Scholar
  135. Thoene, J. G., Oshima, R. G., Ritchie, D. G., et al., 1977, Cystinotic fibroblasts accumulate cystine from intracellular protein degradation, Proc. Natl. Acad. Sci. USA 74:4505.PubMedGoogle Scholar
  136. West, C. D., Blanton, J. C., Silverman, F. N., et al., 1964, Use of phosphate salts as an adjunct to vitamin D in the treatment of hypophosphatemic vitamin D refractory rickets, J. Pediatr. 64:649.Google Scholar
  137. Wilcox, P., and Patrick, A. D., 1974, Biochemical diagnosis of cystinosis using cultured cells, Arch. Dis. Child. 49:209.Google Scholar
  138. Wilcox, P., and Patrick, A. D., 1975, Biochemical diagnosis of cystinosis using leucocytes, Acta Paediatr. Scand. 64:132.Google Scholar
  139. Aebi, H., and Suter, H., 1971, Acatalasemia, in: Advances in Human Genetics, Vol. 2 (H. Harris and K. Hirschhorn, eds.), p. 143, Plenum Press, New York.Google Scholar
  140. Aebi, H., and Wyss, S., 1978, Acatalasemia, in: The Metabolic Basis of Inherited Disease (J. Stanbury, J. Wyngaarden, and D. Fredrickson, eds.), p. 1792, McGraw-Hill, New York.Google Scholar
  141. Barthelemy, H., Claudy, A., Lauras, B., et al., 1983, Prenatal diagnosis of xeroderma pigmentosum, Arch. Fr. Pediatr. 40:198.PubMedGoogle Scholar
  142. Blau, K., Hoar, D., Rattenbury, J., et al., 1977, Prenatal diagnosis of hypophosphatasia, Lancet 2:1139.PubMedGoogle Scholar
  143. Bonkowsky, H., Bloomer, J., and Ebert, P., 1975, Heme synthetase deficiency in human protoporphyria, J. Clin. Invest. 56:1139.PubMedGoogle Scholar
  144. Clark, A. C., and Szobolotzky, M. A., 1985, Triose phosphate isomerase deficiency: Prenatal diagnosis, J. Pediatr. 106:417.PubMedGoogle Scholar
  145. Cleaver, J., 1970, DNA damage and repair in light-sensitive human skin disease, J. invest. Dermatol. 54:181.PubMedGoogle Scholar
  146. DeGoeij, A., Smit, S., and van Steveninck, J., 1977, Porphyrin synthesis in blood cells of patients with erythropoietic protoporphyria, Clin. Chim. Acta 74:27.Google Scholar
  147. Deybach, J., Grandchamp, B., and Grelier, M., 1980, Prenatal exclusion of congenital erythopoietic porphyria (Gunther’s disease) in a fetus at risk, Hum. Genet. 53:217.PubMedGoogle Scholar
  148. Elejalde, B., Mercedes de Elejalde, M., and Leno, J., 1985a, Nuchal cysts syndromes: Etiology, pathogenesis, and prenatal diagnosis, Am. J. Med. Genet. 21:417.PubMedGoogle Scholar
  149. Elejalde, B., Mercedes de Elejalde, M., and Pansch, D., 1985b, Prenatal diagnosis of Jeune syndrome, Am. J. Med. Genet. 21:433.PubMedGoogle Scholar
  150. Elejalde, B., Mercedes de Elejalde, M., Booth, C., et al., 1985c, Prenatal diagnosis of Weyers syndrome (deficient ulnar and fibular rays with bilateral hydronephrosis), Am. J. Med. Genet. 21:439.PubMedGoogle Scholar
  151. Fainaru, M., Deckelbaum, R., and Golbus, M., 1981, Apolipoproteins in human fetal blood and amniotic fluid in mid-trimester pregnancy, Prenat. Diagn. 1:125.PubMedGoogle Scholar
  152. Feldman, E., Shaley, E., Weiner, E., et al., 1985, Microphthalmia—Prenatal ultrasonic diagnosis: A case report, Prenat. Diagn. 5:205.PubMedGoogle Scholar
  153. Freij, B. J., Levy, H. L., Dudin, G., et al., 1984, Clinical and biochemical characteristics of prolidase deficiency in siblings, Am. J. Med. Genet. 19:561.PubMedGoogle Scholar
  154. Horn, N., 1981, Menkes’ X-linked disease: Prenatal diagnosis of hemizygous males and heterozygous females, J. Prenat. Diagn. 1:107.Google Scholar
  155. Hunt MacMillan, R., Harbert, G., Davis, W., et al., 1985, Prenatal diagnosis of Pena-Shokeir syndrome, Am. J. Med. Genet. 21:279.Google Scholar
  156. Kahn, A., Van Biervliet, J. P., Vives-Corrons, J. L., et al., 1977, Genetic and molecular mechanisms of the congenital defects in glucose phosphate isomerase activity: Studies of four families, Pediatr. Res. 11:1123.PubMedGoogle Scholar
  157. Kaiser, I., 1980, Brown amniotic fluid in congenital erythropoietic porphyria, Obstet, Gynecol. 56:383.Google Scholar
  158. Kerr Wilson, R., Duncan, A., Hume, R., et al., 1985, Prenatal pleural effusion associated with congenital pulmonary lymphangiectasia, Prenat. Diagn. 5:73.Google Scholar
  159. Kousseff, B., and Mulivor, R., 1981, Prenatal diagnosis of hypophosphatasia, Obstet. Gynecol. 57:95.Google Scholar
  160. Lehmann, A., Francis, A., and Giannelli, F., 1985, Prenatal diagnosis of Cockayne’s syndrome, Lancet 2:486.Google Scholar
  161. Magnusson, R., Levine, J., Doherty, J., et al., 1974, A red cell enzyme method for the diagnosis of acute intermittent porphyria, Blood 44:857.Google Scholar
  162. Meister, A., 1978, 5-Oxoprolinuria (pyroglutamic aciduria) and other disorders of glutathione biosynthesis, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrick-son, eds.), p. 328, McGraw-Hill, New York.Google Scholar
  163. Mohler, D. N., Majerus, P. W., Minnich, V., et al., 1970, Glutathione synthetase deficiency as a cause of hereditary hemolytic disease, N. Engl. J. Med. 238:1253.Google Scholar
  164. Mulivor, R. Z., Mennuti, M., Zackai, E. H., et al., 1978, Prenatal diagnosis of hypophosphatasia: Genetic biochemical and clinical studies, Am. J. Hum. Genet. 30:271.PubMedGoogle Scholar
  165. Nadler, H. L., and Egan, T. J., 1970, Deficiency of lysosomal acid phosphatase: A new familial metabolic disorder, N. Engl. J. Med. 282:302.PubMedGoogle Scholar
  166. Nitowsky, H., Sassa, S., Nakagawa, A., et al., 1978, Prenatal diagnosis of congenital erythropoietic porphyria, Pediatr. Res. 12:455.Google Scholar
  167. Pettit, B. R., MacKenzie, F., King, G. S., et al., 1984, The antenatal diagnosis and aid to management of hereditary tyrosinaemia by use of a specific and sensitive GC-MS assay for succinylacetone, J. Inherited Metab. Dis. 7(Suppl. 2):135.PubMedGoogle Scholar
  168. Pettit, B. R., Kvittingen, E. A., and Leonard, J. V., 1985, Early prenatal diagnosis of hereditary tyrosinaemia, Lancet 1:1038.PubMedGoogle Scholar
  169. Ramsay, C. A., Coltart, T. M., Blunt, S., et al., 1974, Prenatal diagnosis of xeroderma pigmentosum: Report of the first successful case, Lancet 2:1109.PubMedGoogle Scholar
  170. Rausch, P. G., Pryzwansky, K. B., and Spitznagel, J. K., 1978, Immunocytochemical identification of azurophilic and specific granule markers in the giant granules of Chediak-Higashi neutrophils, N. Engl. J. Med. 298:693.PubMedGoogle Scholar
  171. Renwick, J. H., 1969, Progress in mapping human autosomes, Br. Med. Bull. 25:65.PubMedGoogle Scholar
  172. Romeo, G., Kaback, M. M., and Levin, E. Y., 1970, Uroporphyrinogen. III. Cosynthetase activity in fibroblasts from patients with congenital erythropoietic porphyria, Biochem. Genet. 4:659.PubMedGoogle Scholar
  173. Sassa, S., Solish, G., Levere, R. D., et al., 1975, Studies in porphyria. IV. Expression of the gene defect of acute intermittent porphyria in cultured human skin fibroblasts and amniotic cells. Prenatal diagnosis of the porphyric trait, J. Exp. Med. 142:722.PubMedGoogle Scholar
  174. Sassa, S., Zalar, G., and Kappas, A., 1978, Studies in porphyria VIII: Induction of uroporphyrinogen-I synthase and expression of the gene defect of acute intermittent porphyria in mitogen-stimulated human lymphocytes, J. Clin. Invest. 61:499.PubMedGoogle Scholar
  175. Sassa, S., Zalar, G., Poh-Fitzpatrick, M., et al., 1982, Studies in porphyria X: Functional evidence for a partial deficiency of ferrochelatase activity in mitogen-stimulated lymphocytes from patients with erythropoietic protoporphyria, J. Clin. Invest. 69(4):809.PubMedGoogle Scholar
  176. Schwartz, S., Flannery, D., and Cohen, M., 1985, Tests appropriate for the prenatal diagnosis of ataxia telangiectasia, Prenat. Diagn. 5:9.PubMedGoogle Scholar
  177. Shaham, M., Voss, R., Becker, Y., et al., 1982, Prenatal diagnosis of ataxia telangiectasia, J. Pediatr. 100:134.PubMedGoogle Scholar
  178. Socol, M. L., Sabbagha, R. E., Elias, S., et al., 1985, Prenatal diagnosis of congenital muscular dystrophy producing arthrogryposis, N. Engl. J. Med. 313:1230.PubMedGoogle Scholar
  179. Sugita, T., Ikenaga, M., Suehara, N., et al., 1982, Prenatal diagnosis of Cockayne syndrome using assay of colony-forming ability in ultraviolet-irradiated cells, Clin. Genet. 22:137.PubMedGoogle Scholar
  180. Tonnesen, T., Horn, N., Sondergaard, F., et al., 1985, Measurement of copper in chorionic villi for first trimester diagnosis of Menkes’ disease, Lancet 1:1038.PubMedGoogle Scholar
  181. Umemura, S., 1978, Studies on a patient with iminodipeptiduria. II. Lack of prolidase activity in blood cells, Physiol. Chem. Phys. 10:279.PubMedGoogle Scholar
  182. Valentine, W. N., and Tanaka, K. R., 1978, Pyruvate kinase and other enzyme deficiency hereditary hemolytic anemias, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), p. 1423, McGraw-Hill, New York.Google Scholar
  183. Warren, R. C., MacKenzie, C. F., Rodeck, C. H., et al., 1985, First trimester diagnosis of hypophosphatasia with a monoclonal antibody to the liver/bone/kidney isoenzyme of alkaline phosphatase, Lancet 2:856.PubMedGoogle Scholar
  184. Weinstein, L., and Anderson, C., 1980, In utero diagnosis of Beckwith-Wiedmann syndrome by ultrasound, Radiology 134:474.PubMedGoogle Scholar
  185. Wellner, V. P., Sekura, R., Meister, A., et al., 1974, Glutathione synthetase deficiency, an inborn error of metabolism involving the γ-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria, Proc. Natl. Acad. Sci. USA 71:2505.PubMedGoogle Scholar
  186. Witkop, C. J., Jr., Quevedo, W. C., Jr., and Fitzpatrick, T. B., 1978, Albinism, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), p. 283, McGraw-Hill, New York.Google Scholar

Copyright information

© Aubrey Milunsky 1986

Authors and Affiliations

  • David S. Rosenblatt
    • 1
    • 2
  • Rochelle Hirschhorn
    • 3
  • Joseph D. Schulman
    • 4
  • Aubrey Milunsky
    • 5
  1. 1.Division of Medical Genetics, Department of Medicine, Centre for Human Genetics, MRC Genetics GroupMcGill University-Montreal Children’s Hospital Research InstituteMontrealCanada
  2. 2.Departments of Pediatrics and BiologyMcGill UniversityMontrealCanada
  3. 3.Department of MedicineNew York University Medical CenterNew YorkUSA
  4. 4.Genetics and IVF Institute, and Departments of Human Genetics, Pediatrics, and Obstetrics and GynecologyMedical College of VirginiaFairfaxUSA
  5. 5.Departments of Pediatrics, Obstetrics-Gynecology, and Pathology, Center for Human GeneticsBoston University School of MedicineBostonUSA

Personalised recommendations