Advertisement

Regulation of Neuroendocrine Pathways by Thymosins

  • Nicholas R. Hall
  • Bryan L. Spangelo
  • Allan L. Goldstein
  • John M. FarahJr
  • Thomas L. O’Donohue
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Historically, the thymus gland has long been considered an endocrine gland, first with a role within the reproductive axis (Anderson, 1932) and later as an organ functioning in opposition to the adrenal cortex (Martin, 1976). Within the past three decades, a crucial role during the differentiation of T lymphocytes has also been documented, a role that has greatly overshadowed the thymus gland’s importance as a reproductive and/or stress-associated endocrine tissue. Evidence collected in recent years suggests that these apparently dissociated roles are not mutually exclusive and that in some instances, soluble products of thymic epithelial cells and lymphocytes are responsible for normal functioning of the cellular branch of the immune system as well as the regulation of reproductive and stress-associated neuroendocrine circuits (Goldstein et al., 1981; Hall and Goldstein, 1983). These peptides with hormonelike activity are called thymosins and are able to exert their immunoregulatory influences both directly, by acting at the level of the lymphocyte, and indirectly, via pituitary-gonadal and pituitary-adrenal hormones.

Keywords

Luteinizing Hormone Pituitary Gland Thymus Gland Neuroendocrine Regulation Medial Basal Hypothalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ader, R., and Friedman, S. B., 1964, Social factors affecting emotionality and resistance to disease in animals: IV. Differential housing, emotionality and Walker 256 carcinosarcoma in the rat, Psychol. Rep. 15:535–541.CrossRefGoogle Scholar
  2. Ambrose C. T., 1964, The requirement for hydrocortisone in antibody-forming tissue cultivated in serum-free medium, J. Exp. Med. 119:1027–1049.PubMedCrossRefGoogle Scholar
  3. Ambrose, C. T., 1970, The essential role of corticosteroids in the induction of the immune response in vitro, in: Hormones and the Immune Response (G. E. W. Wolstenholme and J. Knight, eds.), J. A. A. Churchill, London, pp. 100–125.Google Scholar
  4. Anderson, D. H., 1932, The relationship between the thymus and reproduction, Physiol. Rev. 12:1–22.Google Scholar
  5. Berczi, I., Nagy, E., Kovacs, K., and Horvath, E., 1981, Regulation of humoral immunity in rats by pituitary hormones, Acta Endocrinol., 98:506.PubMedGoogle Scholar
  6. Besedovsky, H. O., and Sorkin, E., 1977, Network of immune-neuroendocrine interactions, Clin. Exp. Immunol. 27:1–12.PubMedGoogle Scholar
  7. Besedovsky, H. O., del Rey, A., and Sorkin, E., 1981, Lymphokine-containing supernatants from con-A stimulated cells increase corticosterone blood levels, J. Immunol. 126:385–389.PubMedGoogle Scholar
  8. Comsa, J., Leonhardt, H., and Ozminski, K., 1979, Hormonal influences on the secretion of the thymus, Thymus 1:81–93.PubMedGoogle Scholar
  9. Deschaux, P., Massengo, B., and Fontages, R., 1979, Endocrine interaction of the thymus with the hypophysis, adrenals and testes: Effects of two thymic extracts, Thymus 1:95–108.PubMedGoogle Scholar
  10. Farah, J. M., Bishop, J. F., McGillis, J. P., Hall, N. R., Goldstein, A. L., and O’Donohue, T. L., 1985, Thymosin stimulates hormone secretion from AtT20 mouse corticotropic tumor cells, Soc. Neurosci. Abstr. 11:886.Google Scholar
  11. Goldstein, A. L., Guha, A., Zatz, M. M., and White, A., 1972, Purification and biological activity of thymosin, a hormone of the thymus gland, Proc. Natl. Acad. Sci. U.S.A. 69:1800–1803.PubMedCrossRefGoogle Scholar
  12. Goldstein, A. L., Low, T. L. K., Thurman, G. B., Zatz, M. M., Hall, N. R., Chen, C. P., Hu, S., Naylor, P. B., and McClure, J. E., 1981, Current status of thymosin and other hormones of the thymus gland, Recent Prog. Horm. Res. 37:369–415.PubMedGoogle Scholar
  13. Hall, N. R., and Goldstein, A. L., 1983, The thymus-brain connection: Interaction between thymosin and the neuroendocrine system, Lymphokine Res. 2:1–6.PubMedGoogle Scholar
  14. Hall, N. R., and Goldstein, A. L., 1984, Endocrine regulation of host immunity: The role of steroids and thymosin, in: Immune Modulation Agents and Their Mechanisms (R. L. Fenichel and M. A. Chirigos, eds.), Marcel Dekker, New York, pp. 533–563.Google Scholar
  15. Hall, N. R., McGillis, J. P., Spangelo, B. L., Palaszynski, E., Moody, T., and Goldstein, A. L., 1982, Evidence for a neuroendocrine-thymus axis mediated by thymosin polypeptides, Dev. Immunol. 17:653–660.Google Scholar
  16. Hall, N. R., McGillis, J. P., and Goldstein, A. L., 1984, Activation of neuroendocrine pathways by thymosin peptides, in: Stress, Immunity and Aging (E. L. Cooper, ed.), Marcel Dekker, New York, pp. 209–223.Google Scholar
  17. Hall, N. R., McGillis, J. P., Spangelo, B. L., Healy, D. L., Chrousos, G. P., Schulte, H. M., and Goldstein, A. L., 1985, Thymic hormone effects on the brain and neuroendocrine circuits, in: Neural Modulation of Immunity (R. Guillemin, M. Conn, and T. Melnechuk, eds.), Raven Press, New York, pp. 179–193.Google Scholar
  18. Harris, R. D., Kay, N. E., Seljeskog, K. J., and Douglas, S. D., 1979, Prolactin suppression of leukocyte chemotaxis in vitro, J. Neurosurg. 50:462.PubMedCrossRefGoogle Scholar
  19. Healy, D. L., Hodgen, G. D., Schultz, H. M., Chrousos, G. P., Loriaux, D. L., Hall, N. R., and Goldstein, A. L., 1983, The thymus-adrenal connection: Thymosin has corticotropin-releasing activity in primates, Science 222:1353–1355.PubMedCrossRefGoogle Scholar
  20. Kelly, J. D., and Dineen, J. K., 1973, The suppression of rejection of Nippostrongylus brasiliensis in Lewis strain rats treated with ovine prolactin, Immunology 24:551.PubMedGoogle Scholar
  21. Martin, C. R. (ed.), 1976, Textbook of Endocrine Physiology, Williams & Wilkins, Baltimore.Google Scholar
  22. McGillis, J. P., Hall, N. R., and Goldstein, A. L., 1983a, Orcadian rhythm of thymosin α1 in normal and thymectomized mice, J. Immunol. 131:146–151.Google Scholar
  23. McGillis, J. P., Hall, N. R., and Goldstein, A. L., 1983b, Effect of superfused thymosin fraction 5 and thymosin α1 on in vitro pituitary ACTH release, Soc. Neurosci. Abstr. 343:116.Google Scholar
  24. McGillis, J. P., Hall, N. R., Vahouny, G. V., and Goldstein, A. L., 1985, Thymosin fraction 5 causes increased serum corticosterone in rodents in vivo. J. Immunol 134:3952–3955.Google Scholar
  25. McGillis, J. P., Hall, N. R., and Goldstein, A. L., 1986, Biphasic effects of thymosin fraction 5 on ACTH release from cultured anterior pituitary cells, Fed. Proc. (in press).Google Scholar
  26. Monjan, A. A., 1981, Stress and immunologic competence: Studies in animals, in: Psychoneuroim-munology (R. Ader, ed.), Academic Press, New York, pp. 185–228.Google Scholar
  27. Monjan, A. A., and Collector, M. I., 1977, Stress-induced modulation of the immune response, Science 196:307–308.PubMedCrossRefGoogle Scholar
  28. Palaszynski, E. W., Moody, T. W., O’Donohue, T. L., and Goldstein, A. L., 1983, Thymosin-like peptides: Localization and biochemical characterization in the rat brain and pituitary gland, Peptides 4:463–467.PubMedCrossRefGoogle Scholar
  29. Palmblad, J. E. W., 1985, Stress and human immunologic competence, in: Neural Modulation of Immunity (R. Guillemin, M. Cohn, and T. Melnechuk, eds.), Raven Press, New York, pp. 45–53.Google Scholar
  30. Rebar, R. W., Miyake, A., Low, T. L. K., and Goldstein, A. L., 1981, Thymosin stimulates secretion of luteinizing hormone-releasing factor, Science 214:669–671.PubMedCrossRefGoogle Scholar
  31. Spangelo, B. L., Hall, N. R., and Goldstein, A. L., 1985, Evidence that prolactin is an immunomo-dulatory hormone, in: Prolactin. Basic and Clinical Correlates (R. M. MacLeod, M. O. Thorner, and U. Scapangnini, eds.), Liviana Press, Padova, p. 343.Google Scholar
  32. Stein, M., 1985, Bereavement, depression, stress and immunity, in: Neural Modulation of Immunity (R. Guillemin, M. Cohn, and T. Melnechuk, eds.), Raven Press, New York, pp. 29–4.Google Scholar
  33. Vahouny, G. V., Kyeyune-Nyombi, E., McGillis, J. P., Tare, N. S., Huang, K. Y., Tombes, R., Goldstein, A. L., and Hall, N. R., 1983, Thymosin peptides and lymphokines do not directly stimulate adrenal corticosteroid production in vitro. J. Immunol. 130:791–794.Google Scholar
  34. Weinstein, Y., 1978, Impairment of the hypothalamo-pituitary-ovarian axis of the athymic “nude” mouse, Mech. Ageing Dev. 8:63–69.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Nicholas R. Hall
    • 1
  • Bryan L. Spangelo
    • 1
  • Allan L. Goldstein
    • 1
  • John M. FarahJr
    • 2
  • Thomas L. O’Donohue
    • 2
  1. 1.The George Washington University School of Medicine and Health SciencesWashington, D. C.USA
  2. 2.Experimental Therapeutics BranchNational Institute of Neurological and Communicative Disorders and StrokeBethesdaUSA

Personalised recommendations