Advertisement

Neuropeptides and Adrenal Steroidogenesis

  • George V. Vahouny
  • Carol Herron
  • Robert Tombes
  • Terry W. Moody
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

There has been a great deal of attention directed toward the source, regulation, and function of the peptides derived from the 31 -kD proadrenocorticotropin-endorphin precursor in the pituitary (Barker, 1977; Krieger, 1980; Numa and Nakanishi, 1980). The parent molecule is metabolized to an amino-terminal segment, referred to as the 16K fragment, the 39-amino-acid hormone ACTH, and a 91-amino-acid peptide, β-lipotropin (β-LPH). In turn, ACTH and β-LPH may be metabolized to the smaller peptides, including α-melanotropin (α-MSH) from ACTH and β-MSH and βendorphin from β-lipotropin.

Keywords

cAMP Production Aldosterone Production Adrenal Steroidogenesis Steroidogenic Response Pituitary Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Dujaili, E. A. S., Hope, J., Estivariz, F. E., Lowry, P. J., and Edwards, C. R. W., 1981, Circulating human pituitary pro-7-melanotropin enhances the adrenal response to ACTH, Nature 291:156–159.PubMedCrossRefGoogle Scholar
  2. Barker, J. L., 1977, Physiological roles of peptides in the nervous system, in: Peptides in Neurobiology (H. Gainer, ed.), Plenum Press, New York, pp. 295–344.CrossRefGoogle Scholar
  3. Brown, M., Tache, Y., and Fisher, D., 1979, Central nervous system action of bombesin: Mechanism to induce hyperglycemia, Endocrinology 105:660–665.PubMedCrossRefGoogle Scholar
  4. Dazord, A., Morera, A. M., Bertrand, J., and Saez, J. M., 1974, Prostaglandin receptors in human and ovine adrenal glands: Binding and stimulation of adenyl cyclase in subcellular preparations, Endocrinology 95:352–359.PubMedCrossRefGoogle Scholar
  5. Dazord, A., Gallet, D., and Saez, J. M., 1975, Adenyl cyclase activity in rat, ovine and human adrenal preparations, Horm. Metab. Res. 7:184–189.CrossRefGoogle Scholar
  6. Gasson, J. G., 1979, Steroidogenic activity of high molecular weight forms of corticotropin, Biochemistry 18:4215–4224.PubMedCrossRefGoogle Scholar
  7. Glynn, P., Cooper, D. M. F., and Schulster, D., 1977, Modulation of the response of bovine adre-nocortical adenylate cyclase to corticotropin, Biochem. J. 168:277–282.PubMedGoogle Scholar
  8. Krieger, D. T., 1980, Pituitary hormones in the brain: What is their function? Fed. Proc. 39:2937–2941.PubMedGoogle Scholar
  9. Londos, D., and Rodbell, M., 1975, Multiple inhibitory and activating effects of nucleotides and magnesium on adrenal adenylate cyclase, J. Biol. Chem. 250:3459–3465.PubMedGoogle Scholar
  10. Lowry, P. F., and McMartin, C., 1972, A study of the action of peptides with corticotropic activity on isolated adrenal cells, J. Endocrinol. 55:xxxiii.Google Scholar
  11. Matsuoka, H., Mulrow, P. J., and Li, C. H., 1980, β-Lipotropin: A new aldosterone-stimulating factor, Science 209:307–308.PubMedCrossRefGoogle Scholar
  12. Matsuoka, H., Mulrow, P. J., Franco-Saenz, R., and Li, C. H., 1981, Stimulation of aldosterone production by β-melanotropin, Nature 291:155–159.PubMedCrossRefGoogle Scholar
  13. Numa, S., and Nakanishi, S., 1981, Corticotropin-β-lipotropin precursor—a multihormone precursor and its gene, Trends Biochem. Sci. 6:274–277.CrossRefGoogle Scholar
  14. Pederson, R. C., and Brownie, A. C., 1980, Adrenocortical response to corticotropin is potentiated by part of the amino-terminal region of pro-corticotropin/endorphin, Proc. Natl. Acad. Sci. U.S.A. 77:2239–2243.CrossRefGoogle Scholar
  15. Pederson, R. C., Brownie, A. C., and Ling, N., 1980, Proadrenocorticotropin/endorphin-derived peptides: Coordinate action on adrenal steroidogenesis, Science 208:1044–1046.CrossRefGoogle Scholar
  16. Salomon, Y., Londos, C., and Rodbell, M., 1974, A highly sensitive adenylate cyclase assay, Anal. Biochem. 58:541–548.PubMedCrossRefGoogle Scholar
  17. Schiegal, W., and Schwyzer, R., 1977, Purification of bovine adrenal cortex plasma membrane vesicles containing a highly corticotropin-sensitive adenylate cyclase system and angiotensin II binding sites, Eur. J. Biochem. 72:415–424.CrossRefGoogle Scholar
  18. Seelig, S., and Sayers, G., 1971, Structure activity relationship among ACTH’s, Fed. Proc. 30:316.Google Scholar
  19. Shanker, G., and Sharma, R. K., 1979, β-Endorphin stimulates corticosterone synthesis in isolated rat adrenal cells, Biochem. Biophys. Res. Commun. 36:1–5.CrossRefGoogle Scholar
  20. Silber, R. H., Busch, R., and Oslapas, R., 1958, Practical procedure for estimation of corticosterone or hydrocortisone, Clin. Chem. 4:278–285.PubMedGoogle Scholar
  21. Vahouny, G. V., Chanderbhan, R., Hinds, R., Hodges, V. A., and Treadwell, C. R., 1978, ACTH-induced hydrolysis of cholesterol esters in rat adrenal cells, J. Lipid Res. 19:570–577.PubMedGoogle Scholar
  22. Vinson, G. P., Whitehouse, B. J., Sell, A., Etienne, A. T., and Morris, H. R., 1981, Specific stimulation of steroidogenesis in rat adrenal zone glomerulosa cells by pituitary peptides, Biochem. Biophys. Res. Commun. 99:65–72.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • George V. Vahouny
    • 1
  • Carol Herron
    • 1
  • Robert Tombes
    • 1
  • Terry W. Moody
    • 1
  1. 1.Department of BiochemistryThe George Washington University School of Medicine and Health SciencesUSA

Personalised recommendations