It is well established that peptide hormones are synthesized as larger peptide precursors. Initially this was demonstrated by pulse-chase studies, in vitro synthesis, and immunoprecipitation (Docherty and Steiner, 1982; Loh and Gainer, 1983, for reviews), but molecular biology has now made the sequences of a large number of hormone precursors available, for example, proopiomelanocortin (Nakanishi et al., 1979), proenkephalin (Noda et al., 1982), provasopressin (Land et al., 1982), and prooxytocin (Land et al., 1983). These sequences show certain common features (Fig. 1); in particular, the hormone sequences are bracketed by pairs of basic amino acid residues such as Lys-Arg, Lys-Lys, or Arg-Arg. The precursor forms of these hormones generally lack biological activity, so that limited proteolysis at paired basic residues is necessary to generate the hormones, followed by exopeptidase activity to remove the Lys and Arg terminal residues, which are not found in the mature peptide hormones. Carboxypeptidases (Fricker and Snyder, 1983; Hook and Loh, 1984) and aminopeptidases (Gainer et al., 1984) have been described that are capable of such modifications. However, this discussion is confined to the initial proteolysis by endopeptidases. Cleavage may be followed by other modifications such as acetylation and amidation in order to produce biological potency (Loh and Gainer, 1983, for review).


Secretory Granule Secretory Vesicle Intermediate Lobe Chromaffin Granule Basic Amino Acid Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Barak, Y., Russell, J. T., Whitnall, M. H., Ozato, K., and Gainer, H., 1984, Neurophysin in the hypothalamo-neurohypophysial system. I. Production and characterization of monoclonal antibodies, J. Neurosci. 5:81–97.Google Scholar
  2. Chang, T.-L., and Loh, Y. P., 1983, Characterization of proopiocortin converting activity in rat anterior pituitary secretory granules, Endocrinology 112:1832–1839.PubMedCrossRefGoogle Scholar
  3. Chang, T.-L., and Loh, Y. P., 1984, In vitro processing of proopiocortin by membrane associated and soluble converting enzyme activities from rat intermediate lobe secretory granules, Endocrinology 114:2092–2099.PubMedCrossRefGoogle Scholar
  4. Chang, T.-L., Gainer, H., Russell, J. T., and Loh, Y. P., 1982, Proopiocortin-converting enzyme activity in bovine neurosecretory granules, Endocrinology 111:1607–1614.PubMedCrossRefGoogle Scholar
  5. Cromlish, J. A., Seidah, N. G., and Chretien, M. N., 1985, Isolation and characterization of four proteases from porcine pituitary neurointermediate lobes: Relationship to the maturation enzyme of prohormones, Neuropeptides 5:493–496.PubMedCrossRefGoogle Scholar
  6. Docherty, K., and Steiner, D., 1982, Post-translational proteolysis in polypeptide hormone biosynthesis, Annu. Rev. Physiol. 44:625–638.PubMedCrossRefGoogle Scholar
  7. Evangelista, R., Ray, P., and Lewis, R. V., 1982, A “trypsin-like” enzyme in adrenal chromaffin granules: A proenkephalin processing enzyme, Biochem. Biophys. Res. Commun. 106:895–902.PubMedCrossRefGoogle Scholar
  8. Fletcher, D. J., Noe, B. D., Bauer, G. E., and Quigley, J. P., 1980, Characterization of the conversion of a somatostatin precursor to somatostatin by islet secretory granules, Diabetes 29:593–599.PubMedGoogle Scholar
  9. Fletcher, D. J., Noe, B. D., Bauer, G. E., and Quigley, J. P., 1981, Characterization of proinsulin and proglucagon converting activities in isolated islet secretory granules, J. Cell Biol. 90:312–322.PubMedCrossRefGoogle Scholar
  10. Flicker, L. D., and Snyder, S. H., 1983, Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase, J. Biol. Chem. 258:1050–1055.Google Scholar
  11. Gainer, H., Same, Y. L., and Brownstein, M. J., 1977, Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides, J. Cell Biol. 73:366–381.PubMedCrossRefGoogle Scholar
  12. Gainer, H., Russell, J. T., and Loh, Y. P., 1984, An aminopeptidase activity in bovine pituitary secretory vesicles that cleaves the N-terminal arginine from β-lipotropin6o–65, FEBS Lett. 175:135–139.PubMedCrossRefGoogle Scholar
  13. Gainer, H., Russell, J. T., and Loh, Y. P., 1985, The enzymology and intracellular organization of peptide precursor processing: The secretory vesicle hypothesis, Neuroendocrinology 40:171–184.PubMedCrossRefGoogle Scholar
  14. Hook, V. Y. H., and Loh, Y. P., 1984, Carbopeptidase B-like converting enzyme activity in secretory granules of rat pituitary, Proc. Natl. Acad. Sci. U.S.A. 81:2776–2780.PubMedCrossRefGoogle Scholar
  15. Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thomer, J., 1984, Isolation of the putative structural gene for the lysine arginine cleaving endopeptidase required for processing of prepro a factor, Cell 36:1075–1089.CrossRefGoogle Scholar
  16. Kemmler, W., Steiner, D. F., and Borg, J., 1973, Studies on the conversion of proinsulin to insulin, J. Biol. Chem. 248:4544–4551.PubMedGoogle Scholar
  17. Kurjan, J., and Herskowitz, I., 1982, Structure of a yeast pheromone gene (MF a) a putative a factor precursor contains four tandem repeats of mature a factor, Cell 30:933–942.PubMedCrossRefGoogle Scholar
  18. Land, H., Schutz, G., Schmale, H., and Richter, D., 1982, Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor, Nature 295:299–303.PubMedCrossRefGoogle Scholar
  19. Land, H., Grez, M., Ruppert, S., Schmale, H., Rahbein, M., Richter, D., and Schutz, G., 1983, Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor DNA, Nature 302:342–344.PubMedCrossRefGoogle Scholar
  20. Lindberg, I., Yang, M.-Y. T., and Costa, E., 1984, Further characterization of an enkephalin-generating enzyme from adrenal-medullary chromaffin granules, J. Neurochem. 42:1411–1419.PubMedCrossRefGoogle Scholar
  21. Loh, Y. P., and Gainer, H., 1983, Biosynthesis and processing of neuropeptides, in: Brain Peptides (D. Krieger, M. Brownstein, and J. Martin, eds.), John Wiley & Sons, New York, pp. 79–116.Google Scholar
  22. Loh, Y. P., and Gritsch, H. A., 1981, Evidence for intragranular processing of pro-opiocortin in the mouse pituitary intermediate lobe, Eur. J. Cell Biol. 26:177–183.PubMedGoogle Scholar
  23. Loh, Y. P., Tarn, W. H. H., and Russell, J. T., 1984, Measurement of ApH and membrane potential in secretory vesicles isolated from bovine pituitary intermediate lobe, J. Biol. Chem. 259:8238–8245.PubMedGoogle Scholar
  24. Loh, Y. P., Parish, D. C., and Tuteja, R., 1985, Purification and characterization of a paired basic residue-specific proopiomelanocortin converting enzyme from bovine pituitary intermediate lobe vesicles, J. Biol. Chem. 260:7194–7205.PubMedGoogle Scholar
  25. MacGregor, R. R., Chu, L. L. M., and Cohn, D. V., 1976, Conversion of proparathyroid hormone to parathyroid hormone by a paniculate enzyme of the parathyroid gland, J. Biol. Chem. 251:6711–6716.PubMedGoogle Scholar
  26. MacGregor, R. R., Hamilton, J. W., and Cohn, D. V., 1978, The mode of conversion of propara-thormone to parathormone by a particulate converting enzymic activity of the parathyroid gland, J. Biol. Chem. 253:2012–2017.PubMedGoogle Scholar
  27. Mizuno, K., and Matsuo, H., 1984, A novel protease from yeast with specificity towards paired basic residues, Nature 309:558–560.PubMedCrossRefGoogle Scholar
  28. Mizuno, K., and Matsuo, H., 1985, Proenkephalin processing enzyme with specificity towards paired basic residues purified from bovine adrenal chromaffin granules, Neuropeptides 5:489–492.PubMedCrossRefGoogle Scholar
  29. Mizuno, K., Kojima, M., and Matsuo, H., 1985, A putative prohormone processing protease in bovine adrenal medulla specifically cleaving in between Lys-Arg sequences, Biochem. Biophys. Res. Comm. 128:884–891.PubMedCrossRefGoogle Scholar
  30. Nakanishi, S., Ionue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S., 1979, Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor, Nature 278:423–427.PubMedCrossRefGoogle Scholar
  31. Noda, M., Taranishi, Y., Takahashi, H., Toyosato, M., Natake, M., Nakanishi, S., and Numa, S., 1982, Isolation and structural organization of the human preproenkephalin gene, Nature 297:432–434.CrossRefGoogle Scholar
  32. Noe, B. D., Debo, G., and Speiss, J., 1984, Comparison of prohormone-processing activities in islet microsomes and secretory granules: Evidence for distinct converting enzymes for separate islet prosomatostatins. J. Cell Biol. 99:578–587.PubMedCrossRefGoogle Scholar
  33. Pelaprat, D., Sidah, N. G., Sikstrom, R. A., Lambelin, P., Hamelin, J., Lazure, C., Cromlish, J. A., and Chretien, M., 1984, Subcellular fractionation of pituitary neurointermediate lobes: Revelation of various basic proteases, Endocrinology 115:581–590.PubMedCrossRefGoogle Scholar
  34. Quinn, P. S., and Judah, J. D., 1978, Calcium dependent Golgi-vesicle fusion and cathepsin B in the conversion of proalbumin into albumin in rat liver, Biochem. J. 172:301–309.PubMedGoogle Scholar
  35. Russell, J. T., 1984, ApH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses, J. Biol. Chem. 259:9496–9507.PubMedGoogle Scholar
  36. Smyth, D. G., Austen, B. M., Bradbury, A. F., Geison, M. J., and Small, C. R., 1977, Biogenesis and metabolism of opiate active peptides, in: Centrally Acting Peptides (J. Hughes, ed.), Macmillan, London, pp. 231–239.Google Scholar
  37. Troy, C. M., and Musacchio, J. M., 1982, Processing of enkephalin precursors by chromaffin granule enzymes, Life Sci. 31:1717–1720.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. C. Parish
    • 1
  1. 1.Laboratory of Neurochemistry and NeuroimmunologyNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUSA

Personalised recommendations