Advertisement

Conformationally Restricted Cyclic Penicillamine Analogues with High Selectivity for δ- and μ-Opioid Receptors

  • K. Gulya
  • S. P. Duckles
  • H. I. Yamamura
  • J. T. Pelton
  • V. J. Hruby
  • D. R. Gehlert
  • J. K. Wamsley
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

The concept that there are subtypes of the opiate receptor was originally suggested by Martin et al. (1976) almost a decade ago and is widely accepted based on both in vitro (Martin et al, 1976; Tyers, 1980) and in vivo (Lord et al., 1977; Schulz et al., 1980) studies. The demonstration of separate opioid target sites such as the brain (Herz et al, 1970; Jacquet and Lajtha, 1974; Pert and Yaksh, 1974; Wei et al., 1975) and spinal cord (Yaksh and Rudy, 1976, 1977) has led to the suggestion that a specific effect may be mediated by different opioid receptors at different central nervous system sites (Ling and Pasternak, 1983; Porreca and Burks, 1983). Although numerous pharmacological and biochemical studies of classical (nonpeptide) opiates and opioid peptide analogues have revealed the existence of several subclasses of receptors (e.g., μ, K, and δ, Martin et al., 1976; Gilbert and Martin, 1976; Lord et al., 1977; Chang and Cuatrecasas, 1979; Wolozin and Pasternak, 1981), it is well documented that the vast majority of opioid ligands available interact extensively with the different types of receptors, making it difficult to define receptor roles.

Keywords

Opioid Receptor Opiate Receptor Delta Opioid Receptor Radioreceptor Assay Opioid Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, K., Gee, K., Mosberg, H. L, Hruby, V. J., and Yamamura, H. I., 1985, Characterization of [3H][2-D-penicillamine, 5-D-penicillamine]enkephalin binding to delta opiate receptors in the rat brain and neuroblastoma-glioma hybrid cell line (NG 108-15), Proc. Natl. Acad. Sci. U.S.A. 82:2543–2547.PubMedCrossRefGoogle Scholar
  2. Brownstein, M., Arimura, A., Sato, H., Serially, A. V., and Kizer, J. S., 1975, The effect of hypo-thalamic deafferentiation on somatostatin-like activity in the rat brain, Endocrinology 96:1456–1461.PubMedCrossRefGoogle Scholar
  3. Chang, K.-J., and Cuatrecasas, P., 1979, Multiple opiate receptors: Enkephalins and morphine bind to receptors of different specificity, J. Biol. Chem 254:2610–2618.PubMedGoogle Scholar
  4. Corbett, A. D., Gillan, M. G. C., Kosterlitz, H. W., McKnight, A. T., Paterson, S. J., and Robson, L. E., 1984, Selectivities of opioid peptide analogues as agonists and antagonists at the delta receptor, Br. J. Pharmacol. 83:271–279.PubMedGoogle Scholar
  5. Cotton, R., Kosterlitz, H. W., Paterson, S. J., Ranee, M. J., and Traynor, J. R., 1985, The use of [3H]-[D-Pen2,D-Pen5]enkephalin as a highly selective ligand for the delta binding site, Br. J. Pharmacol. 84:927–932.PubMedGoogle Scholar
  6. Eliel, E. L., Allinger, N. L., Angyl, S. J., and Morrison, G. A., 1965, Conformational Analysis, Interscience Publishers, New York.Google Scholar
  7. Fournie-Zaluski, M.-C., Gacel, G., Maigret, B., Premilat, S. and Roques, B. P., 1981, Structural requirements for specific recognition of mu or delta opiate receptors, Mol. Pharmacol. 20:484–491.PubMedGoogle Scholar
  8. Frederickson, R. C. A., Smithwick, E. L., Shuman, R., and Bemis, K. B., 1981, Metkephamid, a systemically active analog of methionine enkephalin with potent delta receptor selectivity, Science 211:603–605.PubMedCrossRefGoogle Scholar
  9. Galligan, J. J., Mosberg, H. I., Hurst, R., Hruby, V. J., and Burks, T. F., 1984, Cerebral delta opioid receptors mediate analgesia but not the intestinal motility effects of intracerebroventricularly administered opioids, J. Pharmacol. Exp. Ther. 229:641–648.PubMedGoogle Scholar
  10. Gilbert, P. E., and Martin, W. R., 1976, The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog, J. Pharmacol. Exp. Ther. 198:66–82.PubMedGoogle Scholar
  11. Gillan, M. G. C., and Kosterlitz, H. W., 1982, Spectrum of the mu, delta and kappa binding sites in homogenates of rat brain, Br. J. Pharmacol. 77:461–469.PubMedGoogle Scholar
  12. Gillan, M. G. C., Kosterlitz, H. W., and Paterson, S. J., 1980, Comparison of the binding characteristics of tritiated opiates and opioid peptides, Br. J. Pharmacol. 70:481–490.PubMedGoogle Scholar
  13. Gulya, K., Gehlert, D. R., Wamsley, J. K., Mosberg, H. I., Hruby, V. J., Duckies, S. P., and Yamamura, H. I., 1985, Autoradiographic localization of delta opioid receptors in the rat brain using a highly selective bis-penicillamine cyclic enkephalin analog, Eur. J. Pharmacol. 111:285–286.PubMedCrossRefGoogle Scholar
  14. Gulya, K., Gehlert, D., Wamsley, J. K., Mosberg, H. I., Hruby, V. J., Duckies, S. P., and Yamamura, H. I., 1986, Light microscopic autoradiographic localization of delta opioid receptors in the rat brain using a highly selective bis-penicillamine cyclic enkephaline analog, J. Pharmacol. Exp. Ther. (in press).Google Scholar
  15. Gulya, K., Pelton, J. T., Hruby, V.J., and Yamamura, H.I., 1986, Cyclic somatostatin octapeptide analogues wih high affinity and selectivity toward mu opioid receptors, Life Sci. 38:2221–2229.PubMedCrossRefGoogle Scholar
  16. Herz, A., Albus, J., Metys, J., Schubert, P., and Teschemacher, H., 1970, On the central sites for the antinociceptive action of morphine and fentanyl, Neuropharmacology 9:539–551.PubMedCrossRefGoogle Scholar
  17. Jacquet, Y., and Lajtha, A., 1974, Paradoxical effects after microinjection of morphine in the peria-queductal gray matter in the rat, Science 185:1055–1057.PubMedCrossRefGoogle Scholar
  18. Kastin, A. J., Coy, D. H., Jacquet, Y., Schally, A. V., and Plotnikoff, N., 1978, CNS effects of somatostatin, Metabolism 27:1347–1352.CrossRefGoogle Scholar
  19. Kosterlitz, H. W., Lord, J. A. H., Paterson, S. J., and Waterfield, A. A., 1980, Effects of changes in the structure of enkephalins and of narcotic analgesic drugs on their interactions with mu and delta receptors, Br. J. Pharmacol. 68:333–342.PubMedGoogle Scholar
  20. Ling, G. S. F., and Pasternak, G. W., 1983, Spinal and supraspinal opioid analgesia in the mouse: Role of subpopulations of opioid binding sites, Brain Res. 27b1:152–156.CrossRefGoogle Scholar
  21. Lord, J. A., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., 1977, Endogenous opioid peptides: Multiple agonists and receptors, Nature 267:495–499.PubMedCrossRefGoogle Scholar
  22. Marshall, G. R., Bossard, H. E., Vine, W. H., Glickson, J. D., and Needleman, P., 1974, Angiotensin II: Conformation and interaction with the receptor, in: Recent Advances in Renal Physiology and Pharmacology (L. G. Wesson and G. M. Fanelli, Jr., eds.), University Park Press, Baltimore, pp. 215–256.Google Scholar
  23. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E., 1976, The effects of morphine and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog, J. Pharmacol. Exp. Ther. 197:517–523.PubMedGoogle Scholar
  24. Maurer, R., Gaehwiler, B. H., Buescher, H. H., Hill, R. C., and Roemer, D., 1982, Opiate antagonistic properties of an octapeptide somatostatin analog, Proc. Natl. Acad. Sci. U.S.A. 79:4815–4817.PubMedCrossRefGoogle Scholar
  25. Meraldi, J.-P., Hruby, V. J., and Brewster, A. I. R., 1977, Relative conformational rigidity in oxytocin and (l-penicillamine)-oxytocin: A proposal for the relationship of conformational flexibility to peptide hormone agonism and antagonism, Proc. Natl. Acad. Sci. U.S.A. 74:1373–1377.PubMedCrossRefGoogle Scholar
  26. Mosberg, H. I., Hurst, R., Hruby, V. J., Galligan, J. J., Burks, T. F., Gee, K., and Yamamura, H. I., 1982, (D-Pen2, L-Cys5)enkephalinamide and (D-Pen2, D-Cys5)enkephalinamide conformationally constrained cyclic enkephalinamide analogs with delta receptor specificity, Biochem. Biophys. Res. Commun. 106(2):506–512.PubMedCrossRefGoogle Scholar
  27. Mosberg, H. I., Hurst, R., Hruby, V. J., Galligan, J. J., Burks, T. F., Gee, K., and Yamamura, H. I., 1983a, Conformationally constrained cyclic enkephalin analogs with pronounced delta opioid receptor agonist selectivity, Life Sci. 32:2565–2569.PubMedCrossRefGoogle Scholar
  28. Mosberg, H. I., Hurst, R., Hruby, V. J., Gee, K., Akiyama, K., Yamamura, H. I., Galligan, J. J., and Burks, T. F. 1983b, Cyclic penicillamine containing enkephalin analogs display profound delta receptor selectivities, Life Sci. (Suppl. 1)33:447–450.PubMedCrossRefGoogle Scholar
  29. Mosberg, H. I., Hurst, R., Hruby, V. J., Gee, K., Yamamura, H. I., Galligan, J. J., and Burks, T. F. 1983c, Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors, Proc. Natl. Acad. Sci. U.S.A. 80:5871–5874.PubMedCrossRefGoogle Scholar
  30. Patel, Y. C., and Reichlin, S., 1978, Somatostatin in hypothalamus, extrahypothalamic brain and peripheral tissues of the rat, Endocrinology 102:523–530.PubMedCrossRefGoogle Scholar
  31. Pelton, J. T., Gulya, K., Hruby, V. J., Duckies, S. P., and Yamamura, H. I., 1985a, Conformationally restricted analogs of somatostatin with high mu opiate receptor specificity, Proc. Natl. Acad. Sci. U.S.A. 82:236–239.PubMedCrossRefGoogle Scholar
  32. Pelton, J. T., Gulya, K., Hruby, V. J., Duckies, S., and Yamamura, H. I., 1985b, Somatostatin analogs with affinity for opiate receptors in rat brain binding assay, Peptides (Suppl.)6:159–163.PubMedCrossRefGoogle Scholar
  33. Pert, A., and Yaksh, T., 1974, Sites of morphine-induced analgesia in the primate brain: Relation to pain pathways, Brain Res. 80:135–140.PubMedCrossRefGoogle Scholar
  34. Porreca, F., and Burks, T., 1983, The spinal cord as a site of opioid effects on gastrointestinal transit in the mouse, J. Pharmacol. Exp. Ther. 227:22–27.PubMedGoogle Scholar
  35. Porreca, F., Mosberg, H. I., Hurst, R., Hruby, V. J., and Burks, T. F., 1983, A comparison of the analgesic and gastrointestinal transit effects of (D-Pen2, L-Pen5)enkephalin after intracerebroven-tricular and intrathecal administration to mice, Life Sci. (Suppl. 1)33:457–460.PubMedCrossRefGoogle Scholar
  36. Porreca, F., Mosberg, H. I., Hurst, R., Hruby, V. J., and Burks, F. T., 1984, Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse, J. Pharmacol. Exp. Ther. 230:341–348.PubMedGoogle Scholar
  37. Rezek, M. V., Havlicek, L., Leybin, F. S., LaBella, F. S., and Friesen, H., 1978, Opiate-like naloxone-reversible actions of somatostatin given intracerebrally, Can. J. Physiol. Pharmacol. 56:227–231.PubMedCrossRefGoogle Scholar
  38. Schiller, P. W., and DiMao, J., 1982, Opiate receptor subclasses differ in their conformational requirements, Nature 297:74–76.PubMedCrossRefGoogle Scholar
  39. Schiller, P. W., Eggiman, B., DiMao, J., Lemieux, C., and Nguyen, T. M.-D., 1981, Cyclic enkephalin analogs containing a cystine bridge, Biochem. Biophys. Res. Commun. 101:337–343.PubMedCrossRefGoogle Scholar
  40. Schulz, R., Wuster, M., Kreuss, H., and Herz, A., 1980, Selective development of tolerance without dependence in multiple opiate receptors of mouse vas deferens, Nature 285:242–243.PubMedCrossRefGoogle Scholar
  41. Shimohigashi, Y., Costa, T., Chen, H.-C., and Rodbard, D., 1982, Dimeric tetrapeptide enkephalins display extraordinary selectivity for the delta opiate receptor, Nature 297:333–335.PubMedCrossRefGoogle Scholar
  42. Terenius, L., 1976, Somatostatin and ACTH are peptides with partial antagonist-like selectivity for opiate receptors, Eur. J. Pharmacol. 38:211–213.PubMedCrossRefGoogle Scholar
  43. Tyers, M. B., 1980, A classification of opiate receptors that mediate antinociception in animals, Br. J. Pharmacol. 69:503–512.PubMedGoogle Scholar
  44. Ward, S. J., and Takemori, A. E., 1983, Relative involvement of receptor subtypes in opioid-induced inhibition of gastrointestinal transit in mice, J. Pharmacol. Exp. Ther. 224:359–363.PubMedGoogle Scholar
  45. Wei, E., Sigel, S., Loh, H., and Way, E., 1975, Central sites of naloxone-precipitated shaking in the anesthetized morphine-dependent rat, J. Pharmacol. Exp. Ther. 195:480–486.PubMedGoogle Scholar
  46. Wolozin, B. L., and Pasternak, G. W., 1981, Classification of multiple morphine and enkephalin binding sites in the central nervous system, Proc. Natl. Acad. Sci. U.S.A. 78:6181–6185.PubMedCrossRefGoogle Scholar
  47. Yaksh, T. L., and Rudy, T. A., 1976, Analgesia mediated by a direct spinal action of narcotics, Science 192:1357–1358.PubMedCrossRefGoogle Scholar
  48. Yaksh, T. L., and Rudy, T. A., 1977, Studies on the direct spinal action of narcotics in the production of analgesia in the rat, J. Pharmacol. Exp. Ther. 202:411–428.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • K. Gulya
    • 1
    • 4
  • S. P. Duckles
    • 1
  • H. I. Yamamura
    • 1
  • J. T. Pelton
    • 2
  • V. J. Hruby
    • 2
  • D. R. Gehlert
    • 3
  • J. K. Wamsley
    • 3
  1. 1.Department of PharmacologyUniversity of ArizonaTucsonUSA
  2. 2.Department of ChemistryUniversity of ArizonaTucsonUSA
  3. 3.Department of PsychiatryUniversity of UtahSalt Lake CityUSA
  4. 4.Central Research LaboratoryMedical UniversitySzegedHungary

Personalised recommendations