Advertisement

[Norleucine3,6]-Substituted Cholecystokinin Octapeptide Analogues

Design, Synthesis, and Comparative Structure-Activity Relationships in Guinea Pig Brain, Lung, and Pancreas Tissues
  • Tomi K. Sawyer
  • Douglas J. Staples
  • Robert A. Lahti
  • Peggy J. K. D. Schreur
  • Anita E. Wilkerson
  • Henry H. Holzgrefe
  • Stuart Bunting
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Cholecystokinin octapeptide (CCK-8, Fig. 1) is a neurogastric peptide hormone and neurotransmitter that possesses multiple biological activities (Table I). Cholecystokinin octapeptide is one of several molecular variants (e.g., CCK-39, CCK33, CCK-12, and CCK-8) existing within a family of CCK peptides that have been identified in both the central and peripheral nervous systems as well as in the gastrointestinal tract. The specific details related to the discovery, distribution, biosynthesis, metabolism, biological activities in vitro and in vivo, and mechanisms of action of CCK peptides have been excellently reviewed recently (Mutt, 1980; Kelley and Dodd, 1981: Williams, 1982; Morley, 1982; Beinfeld, 1983; Dockray, 1983).

Keywords

Pancreatic Acinus Amylase Release Cholecystokinin Receptor Cholecystokinin Octapeptide Cholecystokinin Receptor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Actachi, H., Rajh, H. M., Tesser, G. I., dePont, J. J. H. M. M., Jensen, R. T., and Gardner, J. D., 1981, Interaction of tryptophan-modified analogues of cholecystokinin-octapeptide with cholecys-tokinin receptors on pancreatic acini, Biochim. Biophys. Acta 678:358–363.CrossRefGoogle Scholar
  2. Adrian, T. E., Bacarese-Hamilton, A. J., and Bloom, S. R., 1985, Measurement of cholecystokinin octapeptide using a new specific radioimmunoassay, Peptides 6:11–16.PubMedCrossRefGoogle Scholar
  3. Agnathi, L. F., Fuxe, K., Benfenati, F., Celani, M. F., Battistini, N., Mutt, V., Cavicchioli, L., Galli, G., and Hokfelt, T., 1983, Differential modulation by CCK-8 and CCK-4 of [3H]-spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat, Neurosci. Lett. 35:179–183.CrossRefGoogle Scholar
  4. Bacarese-Hamilton, A. J., Adrian, T. E., Chohan, P., Antony, T., and Bloom, S. R., 1985, Oxidation/reduction of methionine residues in CCK: A study by radioimmunoassay and isocratic reverse phase high pressure liquid chromatography, Peptides 6:17–22.PubMedCrossRefGoogle Scholar
  5. Beglinger, C., Solomon, T. E., Gyr, K., Moroder, L., and Wunsch, E., 1984, Exocrine pancreatic secretion in response to a new CCK-analog, CCK-33 and caerulein in dogs, Regul. Peptides 8:291–296.CrossRefGoogle Scholar
  6. Beinfeld, M. C., 1983, Cholecystokinin in the central nervous system. A minireview, Neuropeptides 3:411–427.PubMedCrossRefGoogle Scholar
  7. Bodansky, M., Natarajan, S., Hahne, W., and Gardner, J. D., 1977, Cholecystokinin (pancreozymin). 3. Synthesis and properties of an analogue of the C-terminal heptapeptide with serine sulfate replacing tyrosine sulfate, J. Med. Chem. 20:1047–1050.CrossRefGoogle Scholar
  8. Bodansky, M., Martinez, J., Priestly, G. P., Gardner, J. D., and Mutt, V., 1978, Cholecystokinin (pancreozymin). 4. Synthesis and properties of a biologically active analogue of the C-terminal heptapeptide with e-hydroxynorleucine sulfate replacing tyrosine sulfate, J. Med. Chem. 21:1030–1035.CrossRefGoogle Scholar
  9. Bradwejn, J., and de Montigny, C., 1984, Benzodiazepines antagonize cholecystokinin-induced activation of rat hippocampal neurones, Nature 312:363–364.PubMedCrossRefGoogle Scholar
  10. Bunting, S., Holzgrefe, H. H., deVaux, A. E., Staples, D. J., and Sawyer, T. K., 1985, Evidence for a cholecystokinin-octapeptide receptor on guinea pig trachea, in: Peptides: Structure and Function, Proceedings of the Ninth American Peptide Symposium (C.M. Deber, V. J. Hruby, and K. D. Kopple, eds.), Pierce Chemical, Rockford, IL, pp. 579–582.Google Scholar
  11. Castiglione, R. de, 1977, Structure-activity relationships in ceruletide-like peptides, in: First International Symposium of Hormonal Receptors in Digestive Tract Physiology (S. Bonfils, P. Fromageot, and G. Rosselin, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 33–42.Google Scholar
  12. Castiglione, R. de, 1983, Exploitation and exploration of ceruletide and eledoisin, two peptides of nonmammalian origin, Biopolymers 22:507–515.PubMedCrossRefGoogle Scholar
  13. Chang, T.-M., and Chey, W. Y., 1983, Radioimmunoassay of cholecystokinin, Dig. Dis. Sci., 28:456–468.PubMedCrossRefGoogle Scholar
  14. Chang, R. S. L., Lotti, V. J., Martin, G. E., and Chen, T. B., 1983, Increase in brain 125I-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6-hydroxydopamine or ventral tegmental lesions, Life Sci. 32:871–878.PubMedCrossRefGoogle Scholar
  15. Chang, R. S. L., Lotti, V. J., and Chen, T. B., 1985, Cholecystokinin receptor mediated hydrolysis of inositol phospholipids in guinea pig gastric glands, Life Sci. 36:965–971.PubMedCrossRefGoogle Scholar
  16. Cohen, S. L., Knight, M., Tamminga, C. A., and Chase, T. N., 1982, Cholecystokinin-octapeptide effects on conditioned-avoidance behavior, stereotypy and catalepsy, Eur. J. Pharmacol. 83:213–222.PubMedCrossRefGoogle Scholar
  17. Crawley, J. N., St. Pierre, S., and Gaudreau, P., 1984, Analysis of the behavioral activity of C-and N-terminal fragments of cholecystokinin octapeptide, J. Pharmacol. Exp. Ther. 230:438–444.PubMedGoogle Scholar
  18. Dockray, G. J., 1983, Cholecystokinin, in: Brain Peptides (D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds.), John Wiley & Sons, New York, pp. 851–869.Google Scholar
  19. Durieux, C., Belleney, J., Lallemand, J.-Y., Roques, B. P., and Fournie-Zaluski, M.-C., 1983, 1H-NMR conformational study of sulfated and non-sulfated cholecystokinin fragment CCK27-33: Influence of the sulfate group on the peptide folding, Biochem. Biophys. Res. Commun. 114:705–712.PubMedCrossRefGoogle Scholar
  20. Emerson, J., and MacKay, D., 1979, The zig-zag tracheal strip, J. Pharm. Pharmacol. 31:798.CrossRefGoogle Scholar
  21. Faris, P. L., Komisaruk, B. R., Watkins, L. R., and Mayer, D. J., 1983, Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia, Science 219:310–312.PubMedCrossRefGoogle Scholar
  22. Fekete, M., Balázs, M., Penke, B., and Telegdy, G., 1981, Influence of sulfated and unsulfated cholecystokinin octapeptide on conditioned feeding behavior in rats, Peptides 2:385–388.PubMedCrossRefGoogle Scholar
  23. Finkelstein, J. A., Steggles, A. W., Martinez, P. A., and Praissman, M., 1984, Cholecystokinin receptor binding levels in genetically obese rat brain, Peptides 5:11–14.PubMedCrossRefGoogle Scholar
  24. Fourmy, D., Pradayrol, L., Vaysse, N., Susini, C., and Ribet, A., 1984a, 125I-[Thr34, Nle37]-CCK31-39: A nonoxidizable tracer for the characterization of CCK receptor on pancreatic acini and radio-immunoassay of C-terminal CCK peptides, J. Immunoassay 5:99–120.PubMedCrossRefGoogle Scholar
  25. Fourmy, D., Zahidi, A., Pradayrol, L., Vayssette, J., and Ribet, A., 1984b, Relationship of CCK/gastrin receptor binding to amylase release in dog pancreatic acini, Regul. Peptides 10:57–68.CrossRefGoogle Scholar
  26. Gardner, J. D., Conlon, T. P., Klaeveman, H. L., Actams, T. D., and Ondetti, M. A., 1975, Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells, J. Clin. Invest. 56:366–375.PubMedCrossRefGoogle Scholar
  27. Gardner, J. D., Knight, M., Sutliff, V. E., Tamminga, C. A., and Jensen, R. T., 1984, Derivatives of CCK-(26-32) as cholecystokinin receptor antagonists in guinea pig panreatic acini, Am. J. Physiol. 246:G292–G295.PubMedGoogle Scholar
  28. Gaudreau, P., Morell, J. L., St. Pierre, S., Quirion, R., and Pert, C., 1983a, Cholecystokinin octapeptide fragments: Synthesis and structure-activity relationship, in: Peptides: Structure and Function (V. J. Hruby and D. H. Rich, eds.), Pierce Chemical, Rockford, IL, pp. 441–44.Google Scholar
  29. Gaudreau, P., Quirion, R., St. Pierre, S., and Pert, C. B., 1983b, Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin, Peptides 4:755–762.PubMedCrossRefGoogle Scholar
  30. Gillis, R. A., Quest, J. A., Pagani, F. D., Souza, J. D., Taveira da Silva, A. M., Jensen, R. T., Garvey, T. Q. III, and Hamosh, P., 1983, Activation of central nervous system cholecystokinin receptors stimulates respiration in the cat, J. Pharamcol. Exp. Ther. 224:408–414.Google Scholar
  31. Halmy, L., Nyakas, C., and Walter, J., 1982, The C-terminal tetrapeptide of cholecystokinin decreases hunger in rats, Experientia 38:873–874.PubMedCrossRefGoogle Scholar
  32. Hays, S. E., Beinfeld, M. C., Jensen, R. T., Goodwin, F. K., and Paul, S. M., 1980, Demonstration of a putative receptor site for cholecystokinin in rat brain, Neuropeptides 1:53–62.CrossRefGoogle Scholar
  33. Holland, J., Hirst, B. B., and Shaw, B., 1982, Structure-activity studies with cholecystokinin on gastric secretion in the cat, Peptides 3:891–895.PubMedCrossRefGoogle Scholar
  34. Innis, R. B., and Snyder, S. H., 1980, Cholecystokinin receptor binding in brain and pancreas: Regulation of pancreatic binding by cyclic and acyclic guanine nucleotides, Eur. J. Pharmacol. 65:123–124.PubMedCrossRefGoogle Scholar
  35. Jensen, R. T., Jones, S. W., and Gardner, J. D., 1983, COOH-Terminal fragments of cholecystokinin: A new class of cholecystokinin receptor antagonists, Biochim. Biophys. Acta. 757:250–258.PubMedCrossRefGoogle Scholar
  36. Kadar, T., Pesti, A., Penke, B., Toth, G., Zarandi, M., and Telegdy, G., 1983, Structure-activity and dose-effect relationships of the antagonism of picrotoxin-induced seizures by cholecystokinin, fragments and analogues of cholecystokinin in mice, Neuropharmacology 22:1223–1229.PubMedCrossRefGoogle Scholar
  37. Kaminski, D. L., Ruwart, M. J., and Jellinek, M., 1977, Structure-function relationships of peptide fragments of gastrin and cholecystokinin, Am. J. Physiol. 233:E286–E292.PubMedGoogle Scholar
  38. Kelley, J. S., and Dodd, J., 1981, Cholecystokinin and gastrin as transmitters in the mammalian central nervous system, in: Neural Peptides and Neuronal Communication (J. B. Martin, S. Reichlin, and K. L. Bick, eds.), Raven Press, New York, pp. 133–144.Google Scholar
  39. Kochman, R. L., Grey, T. R., and Hirsch, J. D., 1984, Cholecystokinin in vivo reduces binding to rat hypothalamic β-adrenergic sites, Peptides 5:499–502.PubMedCrossRefGoogle Scholar
  40. Lahti, R. A., Sethy, V. H., Barsuhn, C., and Hester, J. B., 1983, Pharmacological profile of the antidepressant adinazolam, a triazolobenzodiazepine, Neuropharmacology 22:1277–1282.PubMedCrossRefGoogle Scholar
  41. Magous, R., Martinez, J., Lignon, M. F., and Bali, J. P., 1983, The role of the Asp-32 residue of cholecystokinin in gastric acid secretion and gastrin receptor recognition, Regul. Peptides 5:327–332.CrossRefGoogle Scholar
  42. Martinez, J., Winternitz, F., Bodansky, M., Gardner, J. D., Walker, M. D., and Mutt, V., 1982, Synthesis and some pharmacological properties of Z-Tyr(SO3H)-Met-Gly-Trp-Met-Asp(Phe-NH2)-OH, a 32 β-aspartyl analogue of cholecystokinin (pancreozymin) 27-33, J. Med. Chem. 25:589–593.PubMedCrossRefGoogle Scholar
  43. Meyer, F. D., Gyr, K., Kayasseh, L., Jeker, L., Wall, M., Trzeciak, A., and Gillesen, D., 1980, Biological activity of the C-terminal octapeptide of cholecystokinin, of three of its analogues and of caerulein in the dog, Experientia 36:434–436.PubMedCrossRefGoogle Scholar
  44. Miller, J. L., Jardine, I., Weissman, E., Go, V. L. W., and Speicher, D., 1984, Characterization of cholecystokinin from the human brain, J. Neurochem. 43:835–840.PubMedCrossRefGoogle Scholar
  45. Morley, J. S., 1968, Structure-function relationships in gastrin-like peptides, Proc. R. Soc. Lond. [Biol.] 170:97–111.CrossRefGoogle Scholar
  46. Morley, J. S., 1977, Information about peptide hormone receptors from structure-activity studies, in: First International Symposium of Hormonal Receptors in Digestive Tract Physiology (S. Bonfils, P. Fromageot, and G. Rosselin, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 3–11.Google Scholar
  47. Morley, J. E., 1982, The ascent of cholecystokinin (CCK) from gut to brain, Life Sci. 30:479–493.PubMedCrossRefGoogle Scholar
  48. Moroji, T., Watanabe, N., Aoki, N., and Itoh, S., 1982, Antipsychotic effects of ceruletide (cerulein) on chronic schizophrenia, Arch. Gen. Psychiatry 39:485.PubMedCrossRefGoogle Scholar
  49. Murphy, R. B., and Schuster, D. I., 1982, Modulation of [3H]-dopamine binding by cholecystokinin octapeptide (CCK-8), Peptides 3:539–543.PubMedCrossRefGoogle Scholar
  50. Mutt, V., 1980, Cholecystokinin: Isolation, structure, and functions, in: Gastrointestinal Hormones (G. B. J. Glass, ed.), Raven Press, New York, pp. 169–221.Google Scholar
  51. Nair, N. P. V., Bloom, D. M., and Nestoros, J. N., 1982, Cholecystokinin appears to have antipsychotic properties, Prog. Neuropsychopharmacol. Biol. Psychiatry 6:509–512.PubMedCrossRefGoogle Scholar
  52. Peikin, S. R., Rottman, A. J., Batzri, S., and Gardner, J. D., 1978, Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas, Am. J. Physiol. 235:E743–E749.PubMedGoogle Scholar
  53. Penke, B., Zarandi, M., Toth, G. K., Kovacs, K., Fekete, M., Telegdy, G., and Pham, P., 1983, The active centres of gastrin and cholecystokinin: Syntheses, conformational problems, correlations between chemical structures and biological activity, in: Peptides 1982 (K. Blaha and P. Malon, eds.), Walter DeGruyter, Berlin, pp. 569–575.Google Scholar
  54. Penke, B., Hajnal, F., Lonovics, J., Holzinger, G., Kadar, T., Telegdy, G., and Rivier, J., 1984, Synthesis of potent heptapeptide analogues of cholecystokinin, J. Med. Chem. 27:845–849.PubMedCrossRefGoogle Scholar
  55. Pi-Sunyer, X., Kissileff, H. R., Thornton, J., and Smith, G. P., 1982, C-Terminal octapeptide of cholecystokinin decreases food intake in obese men, Physiol. Behav. 29:627–630.PubMedCrossRefGoogle Scholar
  56. Plusec, J., Sheehan, J. T., Sabo, E. F., Williams, N., Kocy, O., and Ondetti, M. A., 1970, Synthesis of analogs of the C-terminal octapeptide of cholecystokinin-pancreozymin. Structure-activity relationship, J. Med. Chem. 13:349–352.CrossRefGoogle Scholar
  57. Polak, J. M., and Bloom, S. R., 1982, Regulatory peptides and neuron-specific enolase in the respiratory tract of man and other mammals, Exp. Lung Res. 3:313–328.PubMedCrossRefGoogle Scholar
  58. Praissman, M., and Waiden, M., 1984, The binding characteristics of 125I-gastrin and 125I-CCK-8 to guinea pig fundic gastric glands differ: Is there more than one binding site for peptides of the CCK-gastrin family? Biochem. Biophys. Res. Commun. 123:641–647.PubMedCrossRefGoogle Scholar
  59. Praissman, M., Izzo, R. S., and Berkowitz, J. M., 1982, Modification of the C-terminal octapeptide of cholecystokinin with a high-specific-activity iodinated imidoester: Preparation, characterization, and binding to isolated pancreatic acinar cells, Anal. Biochem. 121:190–198.PubMedCrossRefGoogle Scholar
  60. Praissman, M., Martinez, P. A., Saladino, C. F., Berkowitz, J. M., Steggles, A. W., and Finkelstein, J. A., 1983, Characterization of cholecystokinin binding sites in rat cerebral cortex using a 125I-CCK-8 probe resistant to degradation, J. Neurochem. 40:1406–1413.PubMedCrossRefGoogle Scholar
  61. Rehfeld, J. F., and Morley, J. S., 1983, Residue-specific radioimmunoanalysis: A novel analytical tool. Application to the C-terminal of CCK/gastrin peptides, J. Biochem. Biophys. Methods 7:161–170.PubMedCrossRefGoogle Scholar
  62. Rogawski, M. A., 1982, Cholecystokinin octapeptide: Effects on the excitability of cultured spinal neurons, Peptides 3:545–555.PubMedCrossRefGoogle Scholar
  63. Saito, A., Sankaran, H., Goldfine, I. D., and Williams, J. A., 1980, Cholecystokinin receptors in the brain: Characterization and distribution, Science 208:1155–1156.PubMedCrossRefGoogle Scholar
  64. Saito, A., Williams, J. A., and Goldfine, I. D., 1981, Alterations in brain cholecystokinin receptors after fasting, Nature 289:599–600.PubMedCrossRefGoogle Scholar
  65. Sakamoto, C., Williams, J. A., and Goldfine, I. D., 1984, Brain CCK receptors are structurally distinct from pancreas CCK receptors, Biochem. Biophys. Res. Commun. 124:497–502.PubMedCrossRefGoogle Scholar
  66. Sankaran, H., Goldfine, I. D., Deveney, C. W., Wong, K.-Y., and Williams, J. A., 1980, Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini, J. Biol. Chem. 255:1849–1853.PubMedGoogle Scholar
  67. Schiller, P. W., Natarajan, S., and Bodansky, M., 1978, Determination of the intramolecular tryos-ine-tryptophan distance in a 7-peptide related to the C-terminal sequence of cholecystokinin, Int. J. Peptide Protein Res. 12:139–142.CrossRefGoogle Scholar
  68. Schreur, P. J. K. D., Sawyer, T. K., Ruwart, M. J., Collins, R. J., Staples, D. J., Rush, B. D., Nichols, N. F., and Russell, R. R., 1985, Satiety effects of CCK-8 in rats: Studies on peptide delivery, structure-activity, and subchronic treatment, in: Fifth International Washington Spring Symposium: Neural and Endocrine Peptides and Receptors (abstract).Google Scholar
  69. Spanarkel, M., Martinez, J., Briet, C., Jensen, R. T., and Gardner, J. D., 1983, Cholecystokinin-27-33-amide: A member of a new class of cholecystokinin receptor antagonists, J. Biol. Chem. 258:6746–6749.PubMedGoogle Scholar
  70. Stacher, G., Steinringer, H., Schmierer, G., Schneider, C., and Winklehner, S., 1982a, Cholecystokinin octapeptide decreases intake of solid food in man, Peptides 3: 133–136.PubMedCrossRefGoogle Scholar
  71. Stacher, G., Steinringer, H., Schmierer, G., Winklehner, S., and Schneider, C., 1982b, Ceruletide increases threshold and tolerance to experimentally induced pain in healthy man, Peptides 3:955–962.PubMedCrossRefGoogle Scholar
  72. Szecowka, J., Goldfine, I. D., and Williams, J. A., 1985, Solubilization and characterization of CCK receptors from mouse pancreas, Regul. Peptides 10:71–83.CrossRefGoogle Scholar
  73. Van Ree, J. M., Gaffori, O., and de Wied, D., 1983, In rats, the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents, Eur. J. Pharmacol. 93:63–78.PubMedCrossRefGoogle Scholar
  74. Wennogle, L. P., Steel, D. J., and Petrack, B., 1985, Characterization of central cholecystokinin receptors using a radioiodinated octapeptide probe, Life Sci. 36:1485–1492.PubMedCrossRefGoogle Scholar
  75. Williams, J. A., 1982, Cholecystokinin: A hormone and a neurotransmitter, Biomed. Res. 3:107–121.Google Scholar
  76. Zetler, G., 1982, Cholecystokinin octapeptide, caerulein and caerulein analogues: Effects on thermoregulation in the mouse, Neuropharmacology 21:795–801.PubMedCrossRefGoogle Scholar
  77. Zetler, G., 1983, Cholecystokinin octapeptide (CCK-8), ceruletide and analogues of ceruletide: Effects on tremors induced by oxotremorine, harmine and ibogaine. A comparison with prolyl-leucylglycine amide (MIF), anti-parkinsonian drugs and clonazepam, Neuropharmacology 22:757–766.PubMedCrossRefGoogle Scholar
  78. Zetler, G., 1984, Ceruletide, ceruletide analogues and cholecystokinin octapeptide (CCK-8): Effects on isolated intestinal preparations and gallbladders of guinea pigs and mice, Peptides 5:729–736.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Tomi K. Sawyer
    • 1
  • Douglas J. Staples
    • 1
  • Robert A. Lahti
    • 2
  • Peggy J. K. D. Schreur
    • 2
  • Anita E. Wilkerson
    • 2
  • Henry H. Holzgrefe
    • 3
  • Stuart Bunting
    • 3
  1. 1.Biopolymer Chemistry/BiotechnologyThe Upjohn CompanyKalamazooUSA
  2. 2.CNS Diseases ResearchThe Upjohn CompanyKalamazooUSA
  3. 3.Lipids ResearchThe Upjohn CompanyKalamazooUSA

Personalised recommendations