Vasoactive Intestinal Peptide Increases Tyrosine Hydroxylase Activity in Cultures of Normal and Neoplastic Chromaffin Cells

  • Arthur S. Tischler
  • Donna Costopoulos
  • James E. Jumblatt
  • Robert L. Perlman
  • Joel Horwitz
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The adrenal medulla is innervated by cholinergic preganglionic sympathetic nerve fibers from the splanchnic nerve. These fibers synapse on chromaffin cells and stimulate catecholamine release. They also participate in both short-term and longterm regulation of catecholamine production through their effects on tyrosine hydroxylase, the major regulatory enzyme in catecholamine synthesis. These effects consist of rapid increases in tyrosine hydroxylase activity produced by alterations of the enzyme protein and more delayed increases produced by synthesis of new enzyme protein. They are known respectively as “activation” (Masserano and Weiner, 1979) and “transsynaptic induction” (Guidotti and Costa, 1977) of tyrosine hydroxylase, and both can be initiated by synaptic release of acetylcholine.


PC12 Cell Nerve Growth Factor Tyrosine Hydroxylase Vasoactive Intestinal Peptide Chromaffin Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. M., Tischler, A. S., Lee, Y. C., and Bloom, S. R., 1984, Neuropeptide Y (NPY) in PC12 pheochromocytoma cultures: Responses to dexamethasone and nerve growth factor, Neurosci. Lett. 46:291–296.PubMedCrossRefGoogle Scholar
  2. Baizer, L., and Weiner, N., 1985, Regulation of dopamine release from PC12 pheochromocytoma cells during stimulation with elevated potassium or carbachol, J. Neurochem. 44:495–501.PubMedCrossRefGoogle Scholar
  3. Bomstein, M. B., 1958, Reconstituted rat-tail collagen used as a substrate for tissue cultures on coverslips in Maximow slides and roller tubes, Lab. Invest. 7:134–137.Google Scholar
  4. Bryant, M. G., Bloom, S. R., Polak, J. M., Albuquerque, R. H., Madlin, I., and Pearse, A. G. E., 1976, Possible role for vasoactive intestinal peptide as gastrointestinal hormone and neurotransmitter substance, Lancet 1:991–993.PubMedCrossRefGoogle Scholar
  5. Cahill, A. L., and Perlman, R. L., 1984, Phosphorylation of tyrosine hydroxylase in the superior cervical ganglion, Biochim. Biophys. Acta 805:217–226.PubMedCrossRefGoogle Scholar
  6. Carmichael, S. W., 1983, The Adrenal Medulla, Vol. 3, Eden Press, Quebec.Google Scholar
  7. DeLaTorre, J. C., and Surgeon, J. W., 1976, A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: The SPG method, His-tochemistry 49:81–93.Google Scholar
  8. Doupe, A. S., and Patterson, P., 1983, A neurite-promoting activity present in heart cell conditioned medium enhances the NGF-induced conversion of chromaffin cells to neurons, Soc. Neurosci. Abstr. 9:263.Google Scholar
  9. Eiden, L. E., Giraud, P., Hotchkiss, A., and Brownstein, M. J., 1982, Enkephalins and VIP in human pheochromocytomas and bovine adrenal chromaffin cells, in: Regulatory Peptides: From Molecular Biology to Function (E. Costa and M. Trabucci, eds.), Raven Press, New York, pp. 387–395.Google Scholar
  10. Eiden, L. E., Eskay, R. L., Scott, J., Pollard, H., and Hotchkiss, A. J., 1983, Primary cultures of bovine chromaffin cells synthesize and secrete vasoactive intestinal peptide (VIP), Life Sci. 33:687–693.PubMedCrossRefGoogle Scholar
  11. Erny, R., and Wagner, J. A., 1984, Adenosine-dependent activation of tyrosine hydroxylase is defective in adenosine kinase-deficient PC12 cells, Proc. Natl. Acad. Sci. U.S.A. 81:4974–4978.PubMedCrossRefGoogle Scholar
  12. Erny, R. E., Berezo, M. W., and Perlman, R. L., 1981, Activation of tyrosine 3-monooxygenase in pheochromocytoma cells by adenosine, J. Biol. Chem. 256:1335–1339.PubMedGoogle Scholar
  13. Gozes, I., O’Connor, D. T., and Bloom, F. E., 1983, A possible high molecular weight precursor to vasoactive intestinal polypeptide sequestered into pheochromocytoma chromaffin granules, Regul. Peptides 6:111–119.CrossRefGoogle Scholar
  14. Greene, L. A., and Tischler, A. S., 1976, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. U.S.A. 73:2424–2428.PubMedCrossRefGoogle Scholar
  15. Greene, L. A., and Tischler, A. S., 1982, PC 12 pheochromocytoma cultures in neurobiological research, in: Advances in Cellular Neurobiology, Vol. 3 (S. Fedoroff and L. Hertz, eds.), Academic Press, New York, pp. 373–415.Google Scholar
  16. Guidotti, A., and Costa, E., 1977, Trans-synaptic regulation of tyrosine 3-monooxygenase biosynthesis in rat adrenal medulla, Biochem. Pharmacol. 26:817–823.PubMedCrossRefGoogle Scholar
  17. Hassoun, J., Manges, G., Girand, P., Henry, J. F., Charpin, C., Payan, H., and Toga, M., 1984, Immunohistochemical study of pheochromocytomas. An investigation of methionine-enkephalin, vasoactive intestinal peptide, somatostatin, corticotropin, β-endorphin, and calcitonin in 16 tumors, Am. J. Pathol. 114:56–63.PubMedGoogle Scholar
  18. Hökfelt, T., Elvin, L.-G., Schultzberg, M., Fuxe, K., Said, S. I., Mutt, V., and Goldstein, M., 1977, Immunohistochemical evidence of vasoactive intestinal peptide-containing neurons and nerve-fibers in sympathetic ganglia, Neuroscience 2:885–896.CrossRefGoogle Scholar
  19. Hökfelt, T., Lundberg, J. M., Schultzberg, M., and Fahrenkrug, J., 1981, Immunohistochemical evidence for a local VIPergic neuron system in the adrenal gland of the rat, Acta Physiol. Scand. 113:575–576.PubMedCrossRefGoogle Scholar
  20. Inoue, N., and Hatanaka, H., 1982, Nerve growth factor induces specific enkephalin binding sites in a nerve cell line, J. Biol. Chem. 237:9238–9241.Google Scholar
  21. Ip, N. Y., Ho, C. K., and Zigmond, R. E., 1982, Secretin and vasoactive intestinal peptide acutely increase tyrosine 3-monoxygenase activity in the rat superior cervical ganglion, Proc. Natl. Acad. Sci. U.S.A. 79:7566–7569.PubMedCrossRefGoogle Scholar
  22. Ip, N. Y., Baldwin, C., and Zigmond, R. E., 1984, Acute stimulation of ganglion tyrosine hydroxylase activity by secretin, VIP and PHI, Peptides 5:309–312.PubMedCrossRefGoogle Scholar
  23. Ip, N. Y., Baldwin, C., and Zigmond, R. E., 1985, Regulation of the concentration of adenosine 3′,5′-cyclic monophosphate and the activity of tyrosine hydroxylase in the rat superior cervical ganglion by three neuropeptides of the secretin family, J. Neurosci. 5:1947–1954.PubMedGoogle Scholar
  24. Jumblatt, J. E., and Tischler, A. S., 1982, Regulation of muscarinic ligand binding sites by nerve growth factor in PC12 pheochromocytoma cells, Nature 297:152–159.PubMedCrossRefGoogle Scholar
  25. Kowal, J., 1982, VIP effects on adrenal cortical cell functions, in: Vasoactive Intestinal Peptide (S. I. Said, ed.), Raven Press, New York, pp. 277–284.Google Scholar
  26. Leboulenger, F., Leroux P., Delarue, C., Tonon, M. C., Charney, Y., Dubois, P. M., Coy, D. H., and Vandry, H., 1983, Co-localization of vasoactive intestinal peptide (VIP) and enkephalins in chromaffin cells of the adrenal gland of amphibia. Stimulation of corticosteroid production by VIP, Life Sci. 32:375–383.PubMedCrossRefGoogle Scholar
  27. Levey, G. S., Weiss, S. R., and Ruiz, E., 1975, Characterization of the glucagon receptor in a pheochromocytoma, J. Clin. Endocrinol. Metab. 40:720–723.PubMedCrossRefGoogle Scholar
  28. Linnoila, R. I., DiAugustine, R. P., Hervonen, A., and Miller, R. J., 1980, Distribution of (LEU5) and (MET5) enkephalin, VIP and substance P-like immunoreactivity in human adrenal glands, Neuroscience 5:2247–2259.PubMedCrossRefGoogle Scholar
  29. Livett, B. G., Dean, D. M., and Bray, G. M., 1978, Growth characteristics of isolated adrenal medullary cells in culture, Abstr. Soc. Neurosci. 4:592.Google Scholar
  30. Lucas, C. A., Edgar, D., and Thoenen, H., 1979, Regulation of tyrosine hydroxylase and choline acetyltransferase activities by cell density in the PC 12 pheochromocytoma clonal cell line, Exp. Cell. Res. 121:79–86.PubMedCrossRefGoogle Scholar
  31. Lundberg, J. M., Hökfelt, T., Fahrenkrug, J. F., Nilsson, G., and Terenius, L., 1979, Peptides in the cat carotid body (glomus caroticum): VIP-, enkephalin-, and substance P-like immunoreactivity, Acta Physiol. Scand. 107:179–281.Google Scholar
  32. Lundberg, J. M., Anggard, A., Fahrenkrug, J., Hökfelt, T., and Mutt, V., 1980, Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands. Functional significance of coexisting transmitters for vasodilation and secretion, Proc. Natl. Acad. Sci. U.S.A. 72:1651–1655.CrossRefGoogle Scholar
  33. Masserano, J. M., and Weiner, N., 1979, The rapid activation of adrenal tyrosine hydroxylase by decapitation and its relationship to a cyclic AMP-dependent phosphorylating mechanism, Molec. Pharmacol. 16:513–528.Google Scholar
  34. Mendelsohn, G., Eggleston, J. C., Olson, J. L., Said, S. I., and Baylin, S. B., 1979, Vasoactive intestinal peptide and its relationship to ganglion cell differentiation in neuroblastic tumors, Lab. Invest. 41:144–149.PubMedGoogle Scholar
  35. Miller, R. J., 1984, PHI and GRF: Two new members of the glucagon secretin family, Med. Biol. 61:159–162.Google Scholar
  36. Morera, A. M., Laburthe, M., and Saez, J. M., 1979, Interaction of vasoactive intestinal peptide (VIP) with a mouse adrenal cell line (Y-l): Specific binding and biological effects, Biochem. Biophys. Res. Commun. 90:78–85.PubMedCrossRefGoogle Scholar
  37. Rabe, C. S., Schneider, J. E., and McGee, R., Jr., 1982, Enhancement of depolarization-dependent neurosecretion from PC12 cells by forskolin-induced elevation of cyclic AMP, J. Cyclic Nucleotide Res. 8:371–384.PubMedGoogle Scholar
  38. Robberecht, P., Chatelain, P., Waelbroeck, M., and Christophe, J., 1982, Heterogeneity of VIP-recognizing binding sites in rat tissues, in: Vasoactive Intestinal Peptide (S. I. Said, ed.), Raven Press, New York, pp. 323–332.Google Scholar
  39. Said, S. I., 1976, Evidence for secretion of vasoactive intestinal peptide by tumors of pancreas, adrenal medulla, thyroid and lung: Support for the unifying APUD concept, J. Clin. Endocrinol. 5:201S.CrossRefGoogle Scholar
  40. Salomon, Y., Lordos, C., and Rodbell, M., 1974, A highly sensitive adenylate cyclase assay, Anal. Biochem. 58:541–554.PubMedCrossRefGoogle Scholar
  41. Tischler, A. S., DeLellis, R. A., Biales, B., Nunnemacher, G., Carabba, V., and Wolfe, H. J., 1980, Nerve growth factor-induced neurite outgrowth from normal human chromaffin cells, Lab. Invest. 43:399–409.PubMedGoogle Scholar
  42. Tischler, A. S., Lee, A. K., Slayton, V. W., and Bloom, S. R., 1982a, Content and release of neurotensin in PC12 pheochromocytoma cell cultures. Modulation by dexamethasone and nerve growth factor, Regul. Peptides 3: 415.Google Scholar
  43. Tischler, A. S., Perlman, R. L., Nunnemacher, G., Morse, G. M., DeLellis, R. A., Wolfe, H. J., and Sheard, B. E., 1982b, Long-term effects of dexamethasone and nerve growth factor on adrenal medullary cells cultures from young adult rats, Cell Tissue Res. 225:525–542.PubMedCrossRefGoogle Scholar
  44. Tischler, A. S., Perlman, R. L., Morse, G. M., and Sheard, B. E., 1983, Glucocorticoids increase catecholamine synthesis and storage in PC12 pheochromocytoma cell cultures, J. Neurochem. 40:364–370.PubMedCrossRefGoogle Scholar
  45. Tischler, A. S., Lee, Y. C., Perlman, R. L., Costopoulos, D. Slayton, V. W., and Bloom, S. R., 1984, Production of “ectopic” vasoactive intestinal peptide-like and neurotensin-like immunoreac-tivity in human pheochromocytoma cell cultures, J. Neurosci. 4:1398–1404.PubMedGoogle Scholar
  46. Tischler, A. S., Perlman, R. L., Costopoulos, D., and Horwitz, J., 1985, Vasoactive intestinal peptide activates tyrosine hydroxylase in normal and neoplastic chromaffin cell cultures, Neurosci. Lett. 61:141–146.PubMedCrossRefGoogle Scholar
  47. Unsicker, K., Krisch, B., Otten, U., and Thoenen, H., 1978, Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: Impairment by glucocorticoids, Proc. Natl. Acad. Sci. U.S.A. 75: 3498.Google Scholar
  48. Voile, R. L., and Patterson, B. A., 1982, Regulation of cyclic AMP accumulation in a rat sympathetic ganglion: Effects of vasoactive intestinal peptide, J. Neurochem. 39:1195–1197.CrossRefGoogle Scholar
  49. Wharton, J., Polak, J. M., Pearse, A. G. E., McGregor, G. P., Bryant, M. G., Bloom, S. R., Emson, P. C., Bisgard, G. E., and Will, J. A., 1980, Enkephalin VIP-and substance P-like immuno-reactivity in the carotid body, Nature 284:269–271.PubMedCrossRefGoogle Scholar
  50. Wright, R. D., 1963, Blood flow through the adrenal gland, Endocrinology 72:418–128.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Arthur S. Tischler
    • 1
  • Donna Costopoulos
    • 1
  • James E. Jumblatt
    • 2
  • Robert L. Perlman
    • 3
  • Joel Horwitz
    • 3
  1. 1.Department of PathologyTufts University School of MedicineBostonUSA
  2. 2.Department of BiochemistryTufts University School of MedicineBostonUSA
  3. 3.Department of Physiology and BiophysicsUniversity of Illinois College of MedicineChicagoUSA

Personalised recommendations