Brain Peptides and the Control of Eating Behavior

  • Sarah Fryer Leibowitz
  • B. Glenn Stanley
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Our understanding of brain function has been dramatically enhanced by the discovery of endogenous brain peptides and by subsequent evidence for their role as neuro-transmitters, neuromodulators, and neurohormones (Krieger, 1983; Palkovits and Brownstein, 1985). This review focuses on an area of research that has benefited greatly from these discoveries, namely, the neurochemistry of eating behavior. Research conducted in this field during the past two decades has clearly demonstrated that food intake is controlled via multiple neurotransmitters in the brain, which are responsive to a complex array of metabolic, hormonal, and neural signals. Initially, the focus of this research was on the brain monoamines, which are now believed to have a critical and diverse role in the normal control of food ingestion (Leibowitz, 1980, 1985, 1986a). More recently, however, significant advances have been made with the brain peptides, which also have an important function in feeding, in part through their interaction with the endogenous monoaminergic system (Morley et al., 1983, 1985; Leibowitz, 1985, 1986a,b).


Opioid Peptide Paraventricular Nucleus Lateral Hypothalamus Pancreatic Polypeptide Behavioral Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, T. E., Allen, J. M., Bloom, S. R., Ghatei, M. A., Rossor, M. N., Crow, T. J., Tatemoto, K., and Polak, J. M., 1983, Neuropeptide Y distribution in human brain, Nature 306:584–586.PubMedCrossRefGoogle Scholar
  2. Agnati, L. F., Fuxe, K., Benfenati, F., Battistini, N., Harfstrand, K., Tatemoto, K., Hokfelt, T., and Mutt, V., 1983, Neuropeptide Y in vitro selectively increases the number of α2-adrenergic binding sites in membranes of the medulla oblongata of the rat, Acta Physiol. Scand. 118:293–295.PubMedCrossRefGoogle Scholar
  3. Allen, Y. S., Adrian, T. E., Allen, J. M., Tatemoto, K., Crow, T. J., Bloom, S. R., and Polak, J. M., 1983, Neuropeptide Y distribution in the rat brain, Science 221:877–879.PubMedCrossRefGoogle Scholar
  4. Antin, J., Gibbs, J., Holt, J., Young, R. C., and Smith, G. P., 1975, Cholecystokinin elicits the complete behavioral sequence of satiety in rats, J. Comp. Physiol. Psychol. 87:784–790.CrossRefGoogle Scholar
  5. Apfelbaum, M., and Mandenoff, A., 1981, Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet, Pharmacol. Biochem. Behav. 15:89–91.PubMedCrossRefGoogle Scholar
  6. Atrens, D. M., and von Vietinghoff-Riesch, F., 1972, The motivational properties of electrical stimulation of the medial and paraventricular hypothalamic nuclei, Physiol. Behav. 9:229–235.PubMedCrossRefGoogle Scholar
  7. Baile, D. A., and Della-Fera, M. A., Peptidergic control of food intake in food-producing animals, 1984, Fed. Proc. 43:2898–2902.PubMedGoogle Scholar
  8. Bellinger, L. L., Bernardis, L. L., and Williams, F. E., 1983, Naloxone suppression of food and water intake and cholecystokin reduction of feeding is attenuated in weanling rats with dorsomedial hypothalamic lesions, Physiol. Behav. 31:839–846.PubMedCrossRefGoogle Scholar
  9. Bertierre, M. C., Marne Sy, T., Baigts, F., Mandenoff, A., and Apfelbaum, M., 1984, Stress and sucrose hyperphagia: Role of endogenous opiates, Pharmacol. Biochem. Behav. 20:675–679.CrossRefGoogle Scholar
  10. Bhakthavatsalam, P., and Leibowitz, S. F., 1986a, Morphine-elicited feeding: Diurnal rhythm, circulation corticosterone and macronutrient selection, Pharmacol. Biochem. Behav. 24:911–917.PubMedCrossRefGoogle Scholar
  11. Bhakthavatsalam, P., and Leibowitz, S. F., 1986b, α2-Noradrenergic feeding rhythm in paraventricular nucleus: Relation to corticosterone, Am. J. Physiol. 250:R83–R88.PubMedGoogle Scholar
  12. Brief, D. J., and Davis, J. D., 1984, Reduction of food intake and body weight by chronic intraventricular insulin infusion, Brain Res. Bull. 12:571–575.PubMedCrossRefGoogle Scholar
  13. Carr, K. D., and Simon, E. J., 1983, Effects of naloxone and its quarternary analogues on stimulation-induced feeding, Neuropharmacology 22:127–130.PubMedCrossRefGoogle Scholar
  14. Checler, F., Vincent, J.-P., and Kitabgi, P., 1983, Neurotensin analogs [D-Tyr II] and [D-Phe II] neurotensin resist degradation by brain peptidases in vitro and in vivo, J. Pharmacol. Exp. Ther. 227:743–748.PubMedGoogle Scholar
  15. Clark, J. T., Kalra, P. S., Crowley, W. R., and Kalra, S. P., 1984, Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats, Endocrinology 115:427–429.PubMedCrossRefGoogle Scholar
  16. Cooper, S. J., 1983, Benzodiazepine-opiate antagonist interactions in relation to feeding and drinking behavior, Life Sci. 32:1043–1051.PubMedCrossRefGoogle Scholar
  17. Crawley, J. N., and Knas, J. Z., 1984, Tracing the sensory pathway from gut to brain regions mediating the actions of cholecystokinin on feeding and exploration, Soc. Neurosci. Abstr. 10:533.Google Scholar
  18. DeBeaurepaire, R., and Freed, W. J., 1983, Anorectic effect of calcitonin: Localization to the para-ventricular neucleus of the hypothalamus, Soc. Neurosci. Abstr. 9:188.Google Scholar
  19. Della-Fera, M. A., and Baile, C. A., 1979, Cholecystokininoctapeptide: Continuouspicomole injections into the cerebral ventricles of sheep suppress feeding, Science 206:471–473.PubMedCrossRefGoogle Scholar
  20. Della-Fera, M. A., and Baile, C. A., 1980a, CCK-octapeptide injected in CSF decreases meal size and daily food intake in sheep, Peptides 1:51–54.PubMedCrossRefGoogle Scholar
  21. Della-Fera, M. A., and Baile, C. A., 1980b, Cerebral ventricular injection of CCK-octapeptide and food intake: The importance of continuous injection, Physiol. Behav. 24:1133–1138.PubMedCrossRefGoogle Scholar
  22. Della-Fera, M. A., and Baile, C. A., 1981, Peptides with CCK-like activity administered intracranially elicit satiety in sheep, Physiol. Behav. 26:979–983.PubMedCrossRefGoogle Scholar
  23. Della-Fera, M. A., Baile, C. A., Schneider, B. S., and Grinker, J. A., 1981, Cholecystokinin antibody injected in cerebral ventricles stimulates feeding in sheep, Science 212:687–689.PubMedCrossRefGoogle Scholar
  24. Della-Fera, M. A., Baile, C. A., and Beinfeld, M. C., 1982, Cerebral ventricular transport and uptake: Importance of CCK-mediated satiety, Peptides 3:963–968.PubMedCrossRefGoogle Scholar
  25. Dum, J., Gramsch, C. H., and Herz, A., 1983, Activation of hypothalamic β-endorphin pools by reward induced by highly palatable food, Pharmacol. Biochem. Behav. 18:443–447.PubMedCrossRefGoogle Scholar
  26. Everitt, B. J., Hokfelt, T., Terenius, L., Tatemoto, K., Mutt, V., and Goldstein, M., 1984, Differential coexistence of neuropeptide Y (NPY)-like immunoreactivity with catecholamine in the central nervous system of the rat, Neuroscience 11:443–462.PubMedCrossRefGoogle Scholar
  27. Faris, P. L., Komisaruk, B. R., Watkins, L. R., and Mayer, D. J., 1983a, Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia, Science 219:310–312.PubMedCrossRefGoogle Scholar
  28. Faris, P. L., Scallet, A. C., Olney, J. W., Della-Fera, M. A., and Baile, C. A., 1983b, Behavioral and immunohistochemical analysis of the function of cholecystokinin in the hypothalamic para-ventricular nucleus, Soc. Neurosci. Abstr. 9:184.Google Scholar
  29. Freed, W. J., Perlow, M. J., and Wyatt, R. D., 1979, Calcitonin: Inhibitory effect on eating in rats, Science 206:850–852.PubMedCrossRefGoogle Scholar
  30. Gambert, S. R., Garthwaite, T. L., Pontzer, C. H., and Hagen, T. C., 1980, Fasting associated with decrease in hypothalamic β-endorphin, Science 210:1271–1272.PubMedCrossRefGoogle Scholar
  31. Gibbs, J., and Smith, G. P., 1984, The neuroendocrinology of postprandial satiety, in: Frontiers in Neuroendocrinology, Vol. 8 (L. Martin and W. F. Ganong, eds.), Raven Press, New York, pp. 223–246.Google Scholar
  32. Gibbs, J., and Smith, G. P., 1986, Satiety: The roles of peptides from stomach and intestine, Fed. Proc. 45:1391–1395.PubMedGoogle Scholar
  33. Gibbs, J., Young, R. C., and Smith, G. P., 1973, Cholecystokinin elicits satiety in rats with open gastric fistulas, Nature 245:323–325.PubMedCrossRefGoogle Scholar
  34. Gosnell, B. A., Morley, J. E., and Levine, A. S., 1983a, A comparison of the effects of corticotropin releasing factor and sauvagine on food intake, Pharmacol. Biochem. Behav. 19:771–775.PubMedCrossRefGoogle Scholar
  35. Gosnell, B. A., Morley, J. E., and Levine, A. S., 1983b, Adrenal modulation of the inhibitory effects of corticotropin releasing factor on feeding, Peptides 4:807–812.PubMedCrossRefGoogle Scholar
  36. Gosnell, B. G., Morley, J. E., and Levine, A. S., 1984, Localization of naloxone-sensitive brain areas in relation to food intake, Soc. Neurosci. Abstr. 10:306.Google Scholar
  37. Grandison, L., and Guidotti, A., 1977, Stimulation of food intake by muscimol and β-endorphin, Neuropharmacology 16:533–536.PubMedCrossRefGoogle Scholar
  38. Grinker, J. A., Schneider, B. S., Leibowitz, S. F., Cohen, A., and Gruen, R., 1984, Bombesin and CCK: Effects of central injections on feeding patterns and metabolism, in: Proceedings of the Satellite Symposium of the 1984 Society for Neuroscience Meeting, on The Neural and Metabolic Bases of Feeding, University of California, Davis, p. 24.Google Scholar
  39. Hatfield, J. S., Millard, J., and Smith, C. J. V., 1974, Short-term influence of intra-ventromedial hypothalamic administration of insulin on feeding in normal and diabetic rats, Pharmacol. Biochem. Behav. 2:223–226.PubMedCrossRefGoogle Scholar
  40. Henry, J. L., 1982, Circulating opioids: Possible physiological roles in cerebral nervous function, Neurosci. Biobehav. Rev. 6:229–245.PubMedCrossRefGoogle Scholar
  41. Hermann, G., and Novin, D., 1980, Morphine-inhibition of parabrachial taste units reversed by anoxone, Brain Res. Bull. 5(Suppl. 4): 169–173.CrossRefGoogle Scholar
  42. Hetherington, A. W., and Ranson, S. W., 1940, Hypothalamic lesions and adiposity in the rat, Anat. Rec. 78:149–179.CrossRefGoogle Scholar
  43. Hoebel, B. G., 1985, Integrative Peptides, Brain Res. Bull. 141:525–528.CrossRefGoogle Scholar
  44. Ikeda, H., West, D. B., Pustek, J. J., and Woods, S. C., 1983, Insulin infused intraventricularly reduces food intake and body weight of lean but not obese (falfa) Zucker rats, Diabetes 32(Suppl. 1):61 A.CrossRefGoogle Scholar
  45. Inokuchi, A., Oomura, Y., and Nishimura, H., 1984, Effect of intracerebroventricularly infused glu-cagon on feeding behavior, Physiol. Behav. 33:397–400.PubMedCrossRefGoogle Scholar
  46. Inokuchi, A., Nishimura, H., Zierger, U., Oomura, Y., and Shimizu, N., 1984b, The effects of glucagon on feeding behavior, Neurosci. Lett. 17(Suppl.):S99.Google Scholar
  47. Ixart, G., Alonso, G., Szafarczyk, A., Malaval, F., Nouguier-Soulé, J., and Assenmacher, I., 1982, Adrenocorticotropic regulations after bilateral lesions of the paraventricular or supraoptic nuclei and in Brattleboro rats, Neuroendocrinology 35:270–276.PubMedCrossRefGoogle Scholar
  48. Jhanwar-Uniyal, M., Woods, J. S., Levin, B. E., and Leibowitz, S. F., 1984, Cannula mapping and biochemical studies of the hypothalamic opiate and noradrenergic systems in relation to eating behavior, Proc. East. Psychol. Assoc. 55:106.Google Scholar
  49. King, B. M., Castellanos, F. X., Kastin, A. J., Berzas, M. C., Mauk, M. D., Olson, G. A., and Olson, R. D., 1979, Naloxone-induced suppression of food intake in normal and hypothalamic obese rats, Pharmacol. Biochem. Behav. 11:729–732.PubMedCrossRefGoogle Scholar
  50. Krahn, D. D., Gosnell, B. A., Levine, A. S., Morley, J. E., 1984, Localization of the effects of corticotropin releasing factor on feeding, Soc. Neurosci. Abstr. 10:302.Google Scholar
  51. Krieger, D. T., 1983, Brain peptides: What, where and why? Science 222:975–985.PubMedCrossRefGoogle Scholar
  52. Krieger, D. T., and Häuser, H., 1978, Comparison of synchronization of circadian corticosteroid rhythms by photoperiod and food, Proc. Natl. Acad. Sci. U.S.A. 75:1577–1581.PubMedCrossRefGoogle Scholar
  53. Kyrkouli, S. E., Stanley, B. G., and Leibowitz, S. F., 1986, Bombesin induced anorexia: Sites of action in the rat brain, Peptides (in press).Google Scholar
  54. Lanthier, D., Stanley, B. G., and Leibowitz, S. F., 1985, Feeding elicited by central morphine injection: Sites of action in the brain, Proc. East. Psychol. Assoc. 56:30.Google Scholar
  55. Leibowitz, S. F., 1978, Paraventricular nucleus: A primary site mediating adrenergic stimulation of feeding and drinking, Pharmacol. Biochem. Behav. 8:163–175.PubMedCrossRefGoogle Scholar
  56. Leibowitz, S. F., 1980, Neurochemical systems of the hypothalamus. Control of feeding and drinking behavior and water-electrolyte excretion, in: Handbook of the Hypothalamus, Vol. 3A (P. J. Morgane and J. Panksepp, eds.), Marcel Dekker, New York, pp. 297–437.Google Scholar
  57. Leibowitz, S. F., 1985, Brain neurotransmitters and appetite regulation, Psychopharmacol. Bull. 21:412–418.PubMedGoogle Scholar
  58. Leibowitz, S. F., 1986a, Brain monoamines and peptides: Role in the control of eating behavior, Fed. Proc. 45:1396–1403.PubMedGoogle Scholar
  59. Leibowitz, S. F., 1986b, Opiate, α2-noradrenergic and adrenocorticotropin systems of hypothalamic parventricular nucleus, in: Perspectives on Behavioral Medicine, Vol. 5 (A. Baum, ed.), Academic Press, New York (in press).Google Scholar
  60. Leibowitz, S. F., and Hör, L., 1982, Endorphinergic and α-noradrenergic systems in the paraventricular nucleus: Effects on eating behavior, Peptides 3:4214–428.CrossRefGoogle Scholar
  61. Leibowitz, S. F., and Shor-Posner, G., 1986, Hypothalamic monoamine systems for control of food intake: Analysis of meal patterns and macronutrient selection, in: Psychopharmacology of Eating Disorders: Theoretical and Clinical Development (M. O. Carruba and J. E. Blundell, eds.), Raven Press, New York, pp. 29–49.Google Scholar
  62. Leibowitz, S. F., Jhanwar-Uniyal, M., and Roland, C. R. 1984a, Circadian rhythms of circulating corticosterone and α2-noradrenergic receptors in discrete hypothalamic and extra-hypothalamic areas of the rat brain, Soc. Neurosci. Abstr. 10:294.Google Scholar
  63. Leibowitz, S. F., Roland, C. R., Hör, L., and Squillari, V., 1984b, Noradrenergic feeding elicited via the paraventricular nucleus is dependent upon circulating corticosterone, Physiol. Behav. 32:857–864.PubMedCrossRefGoogle Scholar
  64. Leibowitz, S. F., Weiss, G. F., Yee, F., and Tretter, J. R., 1985, Noradrenergic innervation of the para ventricular nucleus: Specific role in control of carbohydrate ingestion, Brain Res. Bull. 14:561–567.PubMedCrossRefGoogle Scholar
  65. LeMagnen, J., Marfaing-Jallat, P., Miceli, D., and Devos, M., 1980, Pain modulating and reward systems: A single brain mechanism? Pharmacol. Biochem. Behav. 12:729–733.CrossRefGoogle Scholar
  66. Levine, A. S., and Morley, J. E., 1981, Reduction of feeding in rats by calcitonin, Brain Res. 222:187–191.PubMedCrossRefGoogle Scholar
  67. Levine, A. S., and Morley, J. E., 1983, Adrenal modulation of opiate induced feeding, Pharmacol. Biochem. Behav. 19:403–406.PubMedCrossRefGoogle Scholar
  68. Levine, A. S., and Morley, J. E., 1984, Neuropeptide Y: A potent inducer of consummatory behavior in rats, Peptides 5:1025–1029.PubMedCrossRefGoogle Scholar
  69. Levine, A. S., Kneip, J., Grace, M., and Morley, J. E., 1983, Effect of centrally administered neurotensin on multiple feeding paradigms, Pharmacol. Biochem. Behav. 18:19–23.PubMedCrossRefGoogle Scholar
  70. Lundberg, J. M., Terenius, L., Hökfelt, T., and Tatemoto, K., 1984, Catecholamines, neuropeptide Y (NPY), and the pancreatic polypeptide family: Coexistence and interaction in the sympathetic response, in: Catecholamines: Neuropharmacology and Central Nervous System—Theoretical Aspects (E. Usdin, A. Carlsson, A. Dahlstrom, and J. Engel, eds.), Alan R. Liss, New York, pp. 179–189.Google Scholar
  71. Luttinger, D., King, R. A., Sheppard, D., Struff, O., Nemeroff, C. B., and Prange, A. J., Jr., 1982, The effect of neurotensin on food consumption in the rat, Eur. J. Pharmacol. 81:499–503.PubMedCrossRefGoogle Scholar
  72. Margules, D. L., 1979, Beta-endorphin and endoloxone: Hormones for the autonomic nervous system for the conservation or expenditure of bodily resources and energy in anticipation of famine or feast, Neurosci. Biobehav. Rev. 3:155–162.CrossRefGoogle Scholar
  73. Marks-Kaufman, R., 1982, Increased fat consumption induced by morphine administration in rats, Pharmacol. Biochem. Behav. 16:949–955.PubMedCrossRefGoogle Scholar
  74. McGivern, R. F., and Berntson, G. G., 1980, Mediation of diurnal fluctuations in pain sensitivity in the rat by food intake patterns: Reversal by naloxone, Science 210:210–211.PubMedCrossRefGoogle Scholar
  75. McGivern, R. F., Berka, C., Berntson, G. B., Walker, J. M., and Snadman, C. A., 1979, Effect of naloxone on analgesia induced by food deprivation, Life Sci. 25:885–888.PubMedCrossRefGoogle Scholar
  76. McLaughlin, C. L., Baile, C. A., Della-Fera, M. A., and Kasser, T. G., 1985, Meal-stimulated increased hypothalamic concentrations of CCK in the hypothalamus of Zucker obese and lean rats, Physiol. Behav. 35:215–220.PubMedCrossRefGoogle Scholar
  77. McLean, S., and Hoebel, B. G., 1982, Opiate and norepinephrine-induced feeding from the para ventricular nucleus of the hypothalamus are dissociable, Life Sci. 31:2379–2382.PubMedCrossRefGoogle Scholar
  78. Morley, J. E., 1982, The ascent of cholecystokinin (CCK)—from gut to brain, 1982, Life Sci. 30:479–493.PubMedCrossRefGoogle Scholar
  79. Morley, J. E., Levine, A. S., Yim, G. K., and Lowy, M. T., 1983, Opioid modulation of appetite, Neurosci. Biobehav. Rev. 7:281–305.PubMedCrossRefGoogle Scholar
  80. Morley, J. E., Levine, A. S., Gosnell, B. A., and Krahn, D. D., 1985, Peptides as central regulators of feeding, Brain Res. Bull. 14:511–519.PubMedCrossRefGoogle Scholar
  81. Morley, J. E., Levine, A. S., Grace, M. and Kneip, J., 1985, Peptide YY(PYY), a potent oxerigenic agent, Brain Res. 341:200–203.PubMedCrossRefGoogle Scholar
  82. Moss, R. L., Urban, I., and Cross, B. A., 1972, Microelectrophoresis of cholinergic and aminergic drugs on paraventricular neurons, Am. J. Physiol. 223:310–318.PubMedGoogle Scholar
  83. Myers, R. D., 1985, Peptide-catecholamine interactions: Feeding and satiety, Psychopharmacol. Bull. 21:406–411.PubMedGoogle Scholar
  84. Myers, R. D., and McCaleb, M. L., 1981, Peripheral and intrahypothalamic cholecystokinin acts on the noradrenergic “feeding circuit” in the rat’s diencephalon, Neuroscience 6:645–655.PubMedCrossRefGoogle Scholar
  85. Myers, R. D., Bender, S. A., Krstic, M., and Brophy, P. D., 1972, Feeding produced in the satiated rat by elevating the concentration of calcium in the brain, Science 176:1124–1125.PubMedCrossRefGoogle Scholar
  86. Olschowka, J. A., 1984, Neuropeptide Y innervation of the rat paraventricular and supraoptic nuclei, Soc. Neurosci. Abstr. 10:437.Google Scholar
  87. Olson, G. A., Olson, R. D., and Kastin, A. J., 1984, Endogenous opiates: 1983, Peptides 5:975–992.PubMedCrossRefGoogle Scholar
  88. Oomura, Y., Shimizu, N., Miyahara, S., and Hattori, K., 1982, Chemosensitive neurons in the hypothalamus—do they relate to feeding behavior? in: The Neural Basis of Feeding and Reward (B. G. Hoebel and D. Novin, eds.), Haer Institute for Electrophysiological Research, Brunswick, Maine, pp. 551–566.Google Scholar
  89. Palkovits, M., and Brownstein, M. J., 1985, Distribution of neuropeptides in the central nervous system using biochemical micromethods, in: GABA and Neuropeptides in the CNS, Vol. 4, Handbook of Chemical Neuroanatomy (A. Bjorklund and T. Hökfelt, eds.) Elsevier, Amsterdam, pp. 1–71.Google Scholar
  90. Passaro, E., Debas, H., Oldendorf, W., and Yamada, T., 1982, Rapid appearance of intraventricularly administered neuropeptide in the peripheral circulation, Brain Res. 241:335–340.PubMedCrossRefGoogle Scholar
  91. Perlow, M. J., Freed, W. J., Carman, J. S., and Wyatt, R. D., 1980, Calcitonin reduces feeding in man, monkey and rat, Pharmacol. Biochem. Behav. 12:609–612.PubMedCrossRefGoogle Scholar
  92. Pittman, Q. J., Hatton, J. D., and Bloom, F. E., 1980, Morphine and opioid peptides reduce para-ventricular neuronal activity: Studies on the rat hypothalamic slice preparation, Proc. Natl. Acad. Sci. U.S.A. 77:5527–5531.PubMedCrossRefGoogle Scholar
  93. Ritter, R. C., and Ladenhein, E. E., 1984, Fourth ventricular cholecystokinin suppresses feeding in rats, Soc. Neurosci. Abstr. 10:652.Google Scholar
  94. Roland, C. R., Bhakthavatsalam, P., and Leibowitz, S. F., 1985, Interaction between corticosterone and α2-noradrenergic system of the paraventricular nucleus in relation to feeding behavior, Neu-roendocrinology 42:296–305.Google Scholar
  95. Saito, A., Williams, J. A., and Goldfine, I. D., 1981, Alterations in brain cholecystokinin receptors after fasting, Nature 289:599–600.PubMedCrossRefGoogle Scholar
  96. Sänger, D. J., 1981, Endorphinergic mechanisms in the control of food and water intake, Appetite 2:193–208.PubMedCrossRefGoogle Scholar
  97. Sawchenko, P. E., Gold, R. M., and Leibowitz, S. F., 1981, Evidence for vagal involvement in the eating elicited by adrenergic stimulation of the paraventricular nucleus, Brain Res. 225: 249–269.PubMedCrossRefGoogle Scholar
  98. Sawchenko, P. E., Swanson, L.W., Grzanna, R., Howe, P.R.C., Bloom, S. R., and Polak, J.M., 1985, Co-localization of Neuropeptide Y-immuno-reactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J. Comp. Neurol. 241:138–153.PubMedCrossRefGoogle Scholar
  99. Scallet, A. C., Della-Fera, M. A., and Baile, C. A., 1984, Changes in cholecystokinin (CCK) content of specific hypothalamic areas of sheep with feeding and fasting, Soc. Neurosci. Abstr. 10:652.Google Scholar
  100. Scott, P., Jawaharlal, K., and Hoebel, B. G., 1984, Feeding induced with kappa and mu agonists injected in the region of the paraventricular nucleus (PVN) in rats, Proc. East. Psychol. Assoc. 55:106.Google Scholar
  101. Shor-Posner, G., Azar, A., Filart, R., Tempel, D., and Leibowitz, S. F., 1985, Morphine-stimulated feeding: Analysis of macronutrient selection and paraventricular nucleus lesions, Pharmacol. Biochem. Behav. 248:931–939.Google Scholar
  102. Siviy, S. M., and Reid, L. D., 1983, Endorphinergic modulation of acceptability of putative reinforcers, Appetite 4:249–257.PubMedCrossRefGoogle Scholar
  103. Stanley, B. G., 1982, Neurotensin: Evidence for a role in satiety, Ph.D. thesis, Princeton University.Google Scholar
  104. Stanley, B. G., and Leibowitz, S. F., 1984a, Neuropeptide Y: Stimulation of feeding and drinking by injection into the paraventricular nucleus, Life Sci. 35:2635–2642.PubMedCrossRefGoogle Scholar
  105. Stanley, B. G., and Leibowitz, S. F., 1984b, Neuropeptide Y injected into the hypothalamus elicits feeding behavior in the rat, in: Proceedings of the Satellite Symposium of the 1984 Society for Neuroscience Meeting, on the Neural and Metabolic Bases of Feeding, University of California, Davis, p. 7.Google Scholar
  106. Stanley, B. G., and Leibowitz, S. F., 1985a, Regulation of feeding behavior by neuropeptide Y and peptide YY, in: Proceedings of the Neural and Endocrine Peptides and Receptors Symposium, Washington, D.C., p. 67.Google Scholar
  107. Stanley, B. G., and Leibowitz, S. F., 1985b, Neuropeptide Y injected into the paraventricular hypothalamus: A powerful stimulant of feeding behavior, Proc. Natl. Acad. Sci. U.S.A. 82: 3940–3943.PubMedCrossRefGoogle Scholar
  108. Stanley, B. G., Hoebel, B. G., and Leibowitz, S. F., 1983, Neurotensin: Effects of hypothalamic and intravenous injections on feeding and drinking in rats, Peptides 4:493–500.PubMedCrossRefGoogle Scholar
  109. Stanley, B. G., Lanthier, D., and Leibowitz, S. F., 1984, Feeding elicited by the opiate peptide D-Ala-2-Met-enkephalinamide: Sites of action in the brain, Neurosci. Abstr. 10:1103.Google Scholar
  110. Stanley, B. G., Chin, A. S., and Leibowitz, S. F., 1985a, Feeding and drinking elicited by central injection of neuropeptide Y: Evidence for a hypothalamic site(s) of action, Brain Res. Bull. 14:521–524.PubMedCrossRefGoogle Scholar
  111. Stanley, B. G., Kyrkouli, S. E., Lampert, S., and Leibowitz, S. F., 1985b, Hyperphagia and obsesity induced by neuropeptide Y injected chronically into the para ventricular hypothalamus of the rat, Soc. Neurosci. Abstr. 11:36.Google Scholar
  112. Stanley, B. G., Leibowitz, S. F., Eppel, N., St. Pierre, S., and Hoebel, B. G., 1985c, Suppression of norepinephrine-elicited feeding by neurotension: Evidence for behavioral, anatomical and pharmacological specificity, Brain Res. 343:297–304.PubMedCrossRefGoogle Scholar
  113. Stanley, B. G., Daniel, D. R., Chin, A. S., and Leibowitz, S. F., 1985d, Para ventricular nucleus injections of peptide YY and neuropeptide Y selectively enhance carbohydrate ingestion, Peptides 6:1205–1211.PubMedCrossRefGoogle Scholar
  114. Steffens, A. B., 1969, Rapid absorption of glucose in the intestinal tract of the rat after ingestion of a meal, Physiol. Behav. 4:829–832.CrossRefGoogle Scholar
  115. Strubbe, J. H., and Mein, C. G., 1977, Increased feeding in response to bilateral injections of insulin antibodies in the VMH, Physiol. Behav. 19:309–314.PubMedCrossRefGoogle Scholar
  116. Stuckey, J. A., and Gibbs, S., 1982, Lateral hypothalamic injection of bombesin decreases food intake in rats, Brain Res. Bull. 8:617–621.PubMedCrossRefGoogle Scholar
  117. Swanson, L. W., and Sawchenko, P. E., 1983, Hypothalamic integration: Organization of the para-ventricular and supraoptic nuclei, Annu. Rev. Neurosci. 6:269–324.PubMedCrossRefGoogle Scholar
  118. Tepperman, F. S., Hirst, M., and Gowdey, C. W., 1981a, Hypothalamic injection of morphine: Feeding and temperature responses, Life Sci. 28:2459–2467.PubMedCrossRefGoogle Scholar
  119. Tepperman, F. S., Hirst, M., and Gowdey, W., 1981b, A probable role for norepinephrine in feeding after hypothalamic injection of morphine, Pharmacol. Biochem. Behav. 15:555–558.PubMedCrossRefGoogle Scholar
  120. Twery, M. J., Obie, J. F., and Cooper, C. W., 1982, Ability of calcitonin to alter food and water consumption in the rat, Peptides 3:749–755.PubMedCrossRefGoogle Scholar
  121. Unden, A., Tatemoto, K., and Bartfai, T., 1983, Receptors for neuropeptide Y in rat brain, Soc. Neurosci. Abstr. 9:170.Google Scholar
  122. Unnerstall, J. R., Kopajtic, T. A., and Kuhar, M. J., 1984, Distribution of α2-agonist binding sites in the rat and human central nervous system: Analysis of some functional, anatomic correlates of the pharmacologic effets of clonidine and related adrenergic agents, Brain Res. Rev. 7:69–101.CrossRefGoogle Scholar
  123. Vaccarino, F. J., Bloom, F. E., Rivier, J., Vale, W., and Koob, G. F., 1985, Stimulation of food intake in rats by centrally administered hypothalamic growth hormone-releasing factor, Nature 314:167–168.PubMedCrossRefGoogle Scholar
  124. Weiss, G. F., and Leibowitz, S. F., 1985, Efferent projections from the paraventricular nucleus mediating α2-noradrenergic feeding, Brain Res. 347:225–238.PubMedCrossRefGoogle Scholar
  125. Willis, G. L., Hansky, J., and Smith, G. C., 1984, Ventricular, paraventricular and circumventricular structures involved in peptide-induced satiety, Regul. Peptides 9:87–99.CrossRefGoogle Scholar
  126. Woods, S. C., Lotter, E. C., McKay, L. D., and Porte, Jr., D., 1979, Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons, Nature 282:503–505.PubMedCrossRefGoogle Scholar
  127. Woods, J. S., and Leibowitz, S. F., 1985, Hypothalamic sites sensitive to morphine and naloxone: Effects on feeding behavior, Pharmacol. Biochem. Behav. 23:431–438.PubMedCrossRefGoogle Scholar
  128. Woods, J. S., and Porte, D., 1983, The role of insulin as a satiety factor in the central nervous system, in: Advances in Metabolic Disorders, Vol. 10 (A. J. Szabo, ed.), Academic Press, New York, p. 457.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Sarah Fryer Leibowitz
    • 1
  • B. Glenn Stanley
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations