Calcitonin Gene-Related Peptide in the Central Nervous System

Neuronal and Receptor Localization Biochemical Characterization Functional Studies
  • David M. Jacobowitz
  • Gerhard Skofitsch
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Calcitonin gene-related peptide (CGRP) is a 37-amino-acid peptide that has been identified in rat brain and peripheral tissue by immunocytochemistry (Amara et al., 1982; Rosenfeld et al., 1983; Skofitsch and Jacobowitz, 1985c) and in the human brain by radioimmunoassay (Morris et al., 1984; Tschopp et al., 1984, 1985). It was isolated from human medullary thyroid carcinomas and sequenced (Morris et al., 1984). The initial immunocytochemical description of the localization of CGRP revealed a unique neuronal distribution in the CNS and periphery (Rosenfeld et al., 1984). A widespread distribution of immunoreactive cells and fibers was observed at all brain levels and in numerous peripheral organs.


Trigeminal Ganglion Insular Cortex Receptor Binding Site Medial Geniculate Body Central Amygdaloid Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S., and Evans, R. M., 1982, Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products, Nature 298:240–244.PubMedCrossRefGoogle Scholar
  2. Benjamin, R. M., and Akert, K., 1959, Cortical and thalamic areas involved in taste discrimination in the albino rat, J. Comp. Neurol. 111:231–260.PubMedCrossRefGoogle Scholar
  3. Brain, S. D., Williams, T. J., Tippins, H. R., and Maclntyre, I., 1985, Calcitonin gene-related peptide is a potent vasodilator, Nature 323:54–56.CrossRefGoogle Scholar
  4. Diz, D. I., and Jacobowitz, D. M., 1983, Cardiovascular effects of intrahypothalamic injection of α-melanocyte stimulating hormone, Brain Res. 270:265–272.PubMedCrossRefGoogle Scholar
  5. Diz, D. I., and Jacobowitz, D. M., 1984a, Effects of adrenalectomy, propanolol and atropine on the increase in heart rate induced by injection of dermorphin in the rat anterior hypothalamic nucleus, Brain Res. 293:196–199.PubMedCrossRefGoogle Scholar
  6. Diz, D. I., and Jacobowitz, D. M., 1984b, Cardiovascular effects of discrete intrahypothalamic and preoptic injections of bradykinin, Brain Res. Bull. 12:409–417.PubMedCrossRefGoogle Scholar
  7. Diz, D. I., and Jacobowitz, D. M., 1984c, Cardiovascular effects produced by injection of thyrotropin-releasing hormone in specific preoptic and hypothalamic nuclei in the rat, Peptides 5:801–808.PubMedCrossRefGoogle Scholar
  8. Diz, D. I., and Jacobowitz, D. M., 1984d, Cardiovascular actions of four neuropeptides in the rat hypothalamus, Clin. Exp. Hypertension A6:2085–2090.CrossRefGoogle Scholar
  9. Diz, D. I., Vitale, J. A., and Jacobowitz, D. M., 1984, Increases in heart rate and blood pressure produced by injections of dermorphin into discrete hypothalamic sites, Brain Res. 294:47–57.PubMedCrossRefGoogle Scholar
  10. Fisher, L. A., Kikkawa, D. O., Rivier, J. E., Amara, S. G., Evans, R. M., Rosenfeld, M. G., Vale, W. W., and Brown, M. R., 1983, Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide, Nature 305:534–536.PubMedCrossRefGoogle Scholar
  11. Gibson, S. J., Polak, J. M., Bloom, S. R., Sabate, I. M., Mulderry, P. M., Ghatel, M. A., McGregor, G. P., Morrison, J. F. B., Kelley, J. S., Evans, R. M., and Rosenfeld, M. G., 1984, Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species, J. Neurosci. 4:3101–3111.PubMedGoogle Scholar
  12. Jacobowitz, D. M., and O’Donohue, T. L., 1978, α-MSH: Immunohistochemical identification and mapping in neurons of the rat brain, Proc. Natl. Acad. Sci. U.S.A. 75:6300–6304.PubMedCrossRefGoogle Scholar
  13. Jacobowitz, D. M., and Palkovits, M., 1974, Topographic atlas of catecholamine and acetylcholines-terase-containing neurons in the brain. I. Forebrain (telencephalon, diencephalon), J. Comp. Neurol. 157:29–41.PubMedCrossRefGoogle Scholar
  14. Jacobowitz, D. M., O’Donohue, T. L., Chey, W. Y., and Chang, T.-M., 1981, Mapping of motilin-immunoreactive neurons of the rat brain, Peptide s 2:479–487.Google Scholar
  15. Jacobowitz, D. M., Schulte, H., Chrousos, G. P., and Loriaux, D. M., 1983, Localization of CRF-like immunoreactive neurons in the rat brain, Peptides 4:521–524.PubMedCrossRefGoogle Scholar
  16. Jansco, G., and Kiraly, E., 1980, Distribution of chemosensitive primary sensory afferents in the central nervous system of the rat, J. Comp. Neurol. 190:781–792.CrossRefGoogle Scholar
  17. Jancso, G., Kiraly, E., and Jansco-Gabor, A., 1977, Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons, Nature 270:741–743.PubMedCrossRefGoogle Scholar
  18. Kaada, B. R., 1951, Somatomotor, autonomic and electrographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cat and dog, Acta Physiol. Scand. (Suppl.) 83: 285.Google Scholar
  19. König, J. F. R., and Klippel, R. A., 1963, The Rat Brain. A Stereotaxic Atlas, Krieger Publishing, New York.Google Scholar
  20. Krettek, J. E., and Price, J. L., 1978, A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections, J. Comp. Neurol. 178:255–279.PubMedCrossRefGoogle Scholar
  21. Lee, Y., Kawai, Y., Shiosaka, S., Takami, K., Kiyama, H., Hillyard, C. J., Girgis, S., Maclntyre, I., Emson, P. C., and Tohyama, M., 1985, Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: Immunohistochemical analysis, Brain Res. 330:194–196.PubMedCrossRefGoogle Scholar
  22. Leroux, P., and Pelletier, G., 1984, Radioautographic localization of somatostatin-14 and somatostatin-28 binding sites in the rat brain, Peptides 5:503–506.PubMedCrossRefGoogle Scholar
  23. MacLean, P. D., and Delgado, J. M. R., 1953, Electrical and chemical stimulation of fronto-temporal portion of limbic system in the waking animal, Electroencephalogr. Clin. Neurophysiol. 5:91–100.PubMedCrossRefGoogle Scholar
  24. Morris, H. R., Panico, M., Etienne, T., Tippins, J., Girgis, S. I., and Maclntyre, I., 1984, Isolation and characterization of human calcitonin gene-related peptide, Nature 308:746–748.PubMedCrossRefGoogle Scholar
  25. Norgren, R., 1976, Taste pathways to hypothalamus and amygdala, J. Comp. Neurol. 166:17–30.PubMedCrossRefGoogle Scholar
  26. Norgren, R., and Leonard, C. M., 1973, Ascending central gustatory pathways, J. Comp. Neurol. 150:217–238.PubMedCrossRefGoogle Scholar
  27. Olschowka, J. A., O’Donohue, T. L., and Jacobowitz, D. M., 1981, The distribution of bovine pancreatic polypeptide-like immunoreactive neurons in rat brain, Peptides 2:309–331.PubMedCrossRefGoogle Scholar
  28. Olschowka, J. A., O’Donohue, T. L., Mueller, G. P., and Jacobowitz, D. M., 1982, The distribution of corticotropin releasing factor-like immunoreactive neurons in rat brain, Peptides 3: 995–1015.PubMedCrossRefGoogle Scholar
  29. Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res. 59:449–450.PubMedCrossRefGoogle Scholar
  30. Palkovits, M., and Jacobowitz, D. M., 1974, Topographic atlas of catecholamine and acetylcholines-terase-containing neurons in the brain. II. Hindbrain (mesencephalon, rhombencephalon), J. Comp. Neurol. 157:29–41.PubMedCrossRefGoogle Scholar
  31. Rodrigo, J., Polak, J. M., Fernandez, L., Ghatei, M. A., Mulderry, P., and Bloom, S. R., 1985, Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus, Gastroenterology 88:444–451.PubMedGoogle Scholar
  32. Rosenfeld, M. G., Mermod, J.-J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W., and Evans, R. M., 1983, Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing, Nature 304:129–135.PubMedCrossRefGoogle Scholar
  33. Rosenfeld, M. G., Amara, S. F., and Evans, R. M., 1984, Alternative RNA processing: Determining neuronal phenotype, Science 225:1315–1320.PubMedCrossRefGoogle Scholar
  34. Scadding, J. W., 1980, The permanent anatomical effects of neonatal capsaicin on somatosensory nerves, J. Anat. 131:473–484.Google Scholar
  35. Shults, C. W., Quirion, R., Chronwall, B., Chase, T. N., and O’Donohue, T. L., 1984, A comparison of the anatomical distribution of substance P and substance P receptors in the rat central nervous system, Peptides 5:1097–1128.PubMedCrossRefGoogle Scholar
  36. Skofitsch, G., and Jacobowitz, D. M., 1985a, Distribution of corticotropin releasing factor-like im-munoreactivity in the rat brain by immunohistochemistry and radioimmunoassay: Comparison and characterization of ovine and rat/human CRF antisera, Peptides 6:319–336.PubMedCrossRefGoogle Scholar
  37. Skofitsch, G., and Jacobowitz, D. M., 1985b, Immunohistochemical mapping of galanin-like neurons in the rat central nervous system, Peptides 6:509–546.PubMedCrossRefGoogle Scholar
  38. Skofitsch, G., and Jacobowitz, D. M., 1985c, Calcitonin gene-related peptide: Detailed immunohistochemical distribution in the rat central nervous system, Peptides 6:721–746.PubMedCrossRefGoogle Scholar
  39. Skofitsch, G., and Jacobowitz, D. M., 1985d, Quantitative distribution of calcitonin gene-related peptide in the rat central nervous system. Peptides 6:1069–1073.PubMedCrossRefGoogle Scholar
  40. Skofitsch, G., and Jacobowitz, D. M., 1985e, Calcitonin gene-related peptide coexists with substance P in capsaicin sensitive neurons and ganglia of the rat, Peptides 6:747–754.PubMedCrossRefGoogle Scholar
  41. Skofitsch, G., Jacobowitz, D. M., Eskay, R. L., and Zamir, N., 1985, Distribution of atrial natriuretic factor-like immunoreactive neurons in the rat brain, Neuroscience 16:917–948.PubMedCrossRefGoogle Scholar
  42. Szolcsanyi, J., Jancso-Gabor, A., and Joo, F., 1975, Functional and fine structural characteristics of the sensory neuron blocking effect of capsaicin, Naunyn Schmiedebergs Arch. Pharmacol. 287:157–163.PubMedCrossRefGoogle Scholar
  43. Tschopp, F. A., Tobler, P. H., and Fischer, J. A., 1984, Calcitonin gene-related peptide in the human thyroid, pituitary and brain, Mol. Cell. Endocrinol. 36:53–57.PubMedCrossRefGoogle Scholar
  44. Tschopp, F. A., Henke, H., Petermann, J. B., Tobler, P. H., Janzer, R., Hökfelt, T., Lundberg, J. M., Cuello, C., and Fischer, J. A., 1985, Calcitonin gene-related peptide and its binding sites in the human central nervous system and pituitary, Proc. Natl. Acad. Sci. U.S.A. 82:248–252.PubMedCrossRefGoogle Scholar
  45. Wisenfeld-Hallin, Z., Hökfelt, T., Lundberg, J. M., Forssmann, W. G., Reinecke, M., Tschopp, F. A., and Fischer, J. A., 1984, Immunoreactive calcitonin gene-related peptides and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat, Neurosci. Lett. 52:199–204.CrossRefGoogle Scholar
  46. Wynn, P. C., Hauger, R. L., Holmes, M. C., Millan, M. A., Catt, K. J., and Auguilera, G., 1984, Brain and pituitary receptors for corticotropin releasing factor: Localization and differential regulation after adrenalectomy, Peptides 5:1077–1084.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David M. Jacobowitz
    • 1
  • Gerhard Skofitsch
    • 2
  1. 1.Clinical Neuroscience Branch, National Institute of Mental HealthNational Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Clinical Science, National Institute of Mental HealthNational Institutes of HealthBethesdaUSA

Personalised recommendations