Advertisement

Cholecystokinin

  • Rosalyn S. Yalow
  • John Eng
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

In his 1904 Nobel lecture, Ivan Pavlov described the chronic esophageal fistula preparation with which he had made many fundamental discoveries concerning canine digestion. In a particularly intriguing experiment, Pavlov observed that fasted dogs ate voraciously and continually while ingested food was removed through the fistula, becoming satiated only when gastric chyme was placed in the duodenum. This observation led to the concept of postgastric satiety mechanisms and, after the discovery of intestinal hormones, provided the basis for studying intestinal hormones as satiety-inducing agents. Many years later, Serially et al. (1967) demonstrated that enterogastrone, a gut extract undoubtedly rich in cholecystokinin (CCK), inhibited feeding by fasted mice. Since that time there have been numerous reports concerning the possible role of CCK-related peptides peripherally administered as a putative satiety factor with a variety of functions other than its well-known classical roles, i.e., its effect on gallbladder contractions and release of pancreatic enzymes.

Keywords

Cortical Gray Matter Decrease Food Intake Intestinal Hormone Cholecystokinin octapeptIde Gastric Chyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calam, J., Ellis, A., and Dockray, G. J., 1982, Identification and measurement of molecular variants of cholecystokinin in duodenal mucosa and plasma, J. Clin. Invest. 69:218–225.PubMedCrossRefGoogle Scholar
  2. Della-Fera, M. A., Baile, C. A., Schneider, B. S., Grinkler, J. A., 1981, Cholecystokinin antibody injected in cerebral ventricles stimulates feeding in sheep, Science 212:687–689.PubMedCrossRefGoogle Scholar
  3. Dodd, P. R., Edwardson, J. A., and Dockray, G. J., 1980, The depolarization-induced release of cholecystokinin C-terminal octapeptide (CCK-8) from rat synaptosomes and brain slices, Regul. Peptides 1:17–29.CrossRefGoogle Scholar
  4. Emson, P. C., Lee, C. M., and Rehfeld, J. F., 1980, Cholecystokinin octapeptide: Vesicular localization and calcium dependent release from rat brain in vitro, Life Sci. 26:2157–2163.PubMedCrossRefGoogle Scholar
  5. Eng, J., Shiina, Y., Straus, E., and Yalow, R. S., 1982, Post-translational processing of cholecystokinin in pig brain and gut, Proc. Natl. Acad. Sci. U.S.A. 79:6060–6064.PubMedCrossRefGoogle Scholar
  6. Eng, J., Shiina, Y., Pan, Y.-C. E., Blacher, R., Chang, M., Stein, S., and Yalow, R. S., 1983, Pig brain contains CCK-octapeptide and several CCK-desoctapetides, Proc. Natl. Acad. Sci. U.S.A. 80:6381–6385.PubMedCrossRefGoogle Scholar
  7. Eng. J., Du, B.-H., Pan, Y.-C. E., Chang, M., Hulmes, J. D., and Yalow, R. S., 1984, Purification and sequencing of a rat intestinal 22 amino acid C-terminal CCK fragment, Peptides 5:1203–1206.PubMedCrossRefGoogle Scholar
  8. Epelbaum, J., Brazeau, P., Tsang, D., Brawer, J., and Martin, J. B., 1977, Subcellular distribution of radioimmunoassayable somatostatin in rat, Brain Res. 126:309–323.PubMedCrossRefGoogle Scholar
  9. Fekete, M., Várszegi, M., Kádár, T., Penke, B., Kovács, K., and Telegdy, G., 1981a, Influence of cholecystokinin octapeptide sulfate ester on brain monoamine metabolism in rats, J. Neural Transm. 50:80–88.CrossRefGoogle Scholar
  10. Fekete, M., Kádár, T., and Telegdy, G., 1981b, Effect of cholecystokinin antiserum on the brain monoamine content in rats, Acta Physiol. Acad. Sci. Hung. 57(2): 177–183.PubMedGoogle Scholar
  11. Giachetti, A., Said, S.-I., Reynolds, R. C., and Koniges, F. C., 1977, Vasoactive intestinal polypeptide in brain: Localization in and release from isolated nerve terminals, Proc. Natl. Acad. Sci. U.S.A. 74:3424–3428.PubMedCrossRefGoogle Scholar
  12. Gibbs, J., Falasco, J. D., and McHugh, P. R., 1976, Cholecystokinin-decreased food intake in rhesus monkeys, Am. J. Physiol. 230:15–18.PubMedGoogle Scholar
  13. Gubler, U., Chua, A. O., Hoffman, B. J., Collier, K. J., and Eng. J., 1984, Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc. Natl. Acad. Sci. U.S.A. 81:4307–43PubMedCrossRefGoogle Scholar
  14. Hökfelt, T., Elde, R., Fuxe, K., Johansson, O., Ljungdahl, A., Goldstein, M., Luft, R., Efendic, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S. L., Rehfeld, J. F., Said, S., Perez de la Mora, M., Possani, L., Tapia, R., Teran, L., and Palacios, R., 1978, Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus, in: The Hypothalamus (S. Reichlin, R. J. Baldessarini, and J. B. Martin, eds.), Raven Press, New York, pp. 69–135.Google Scholar
  15. Ichihara, K., Eng, J., and Yalow, R. S., 1983, Ontogeny of immunoreactive CCK, VIP and secretin in rat brain and gut, Biochem. Biophys. Res. Commun. 112:891–898.PubMedCrossRefGoogle Scholar
  16. Ichihara, K., Eng, J., Pond, W. G., Yen, J. T., Straus, E., and Yalow, R. S., 1984a, Ontogeny of immunoreactive CCK and VIP in pig brain and gut, Peptides 5:623–626.PubMedCrossRefGoogle Scholar
  17. Ichihara, K., Eng, J., and Yalow, R. S., 1984b, Ontogeny of molecular forms of CCK-peptides in rat brain and gut, Life Sci. 34:93–98.PubMedCrossRefGoogle Scholar
  18. Innis, R. B., Correa, F. M. A., Uhl, G., Schneider, R., and Snyder, S. H., 1979, Cholecystokinin octapeptide-like immunoreactivity: Histochemical localization in rat brain, Proc. Natl. Acad. Sci. U.S.A. 76:521–525.PubMedCrossRefGoogle Scholar
  19. Kissileff, H. R., Pi-Sunyer, X. F., Thornton, J., and Smith, G. P., 1981, C-terminal octapeptide of cholecystokinin decreases food intake in man, Am. J. Clin. Nutr. 34:154–160.PubMedGoogle Scholar
  20. Klaff, L. J., Hudson, A., Sheppard, M., and Tyler, M., 1981, In vitro release of cholecystokinin octapeptide-like immunoreactivity from rat brain synaptosomes, 5. Afr. Med. J. 59:158–160.Google Scholar
  21. Larsson, L. I., and Rehfeld, J. F., 1979, A peptide resembling COOH-terminal tetrapeptide amide of gastrin from a new gastrointestinal endocrine cell type, Nature 277:575–577.PubMedCrossRefGoogle Scholar
  22. Loren, I., Alumets, J., Hakanson, R., and Sundler, F., 1979, Distribution of gastrin and CCK-like peptides in rat brain. An immunocytochemical study, Histochemistry 59:249–257.PubMedCrossRefGoogle Scholar
  23. McCaleb, M. L., and Myers, R. D., 1980, Cholecystokinin acts on the hypothalamic “noradrenergic system” involved in feeding. Peptides 1:47–49.PubMedCrossRefGoogle Scholar
  24. Pinget, M., Straus, E., and Yalow, R. S., 1978, Localization of cholecystokinin-like immunoreactivity in isolated nerve terminals, Proc. Natl. Acad. Sci. U.S.A. 75:6324–6326.PubMedCrossRefGoogle Scholar
  25. Pinget, M., Straus, E., and Yalow, R. S., 1979, Release of cholecystokinin peptides from a synaptosome-enriched fraction of rat cerebral cortex, Life Sci. 25:339–342.PubMedCrossRefGoogle Scholar
  26. Rehfeld, J. F., and Kruse-Larsen, C., 1978, Gastrin and cholecystokinin in human cerebrospinal fluid. Immunochemical determination of concentrations and molecular heterogeneity, Brain Res. 155:19–26.PubMedCrossRefGoogle Scholar
  27. Ryder, S., Straus, E., and Yalow, R. S., 1980, Further characterization of brain cholecystokinin converting enzymes, Proc. Natl. Acad. Sci. U.S.A. 77:3669–3671.PubMedCrossRefGoogle Scholar
  28. Schally, A. V., Redding, T. W., Lucien, H. W., and Meyer, J., 1967, Enterogastrone inhibits eating by fasted mice, Science 157:210–211.PubMedCrossRefGoogle Scholar
  29. Straus, E., Muller, J. E., Choi, H.-S., Paronetto, F., and Yalow, R. S., 1977, Immunohistochemical localization in rabbit brain of a peptide resembling the C-terminal cholecystokinin octapeptide, Proc. Natl. Acad. Sci. U.S.A. 74:3033–3034.PubMedCrossRefGoogle Scholar
  30. Sturdevant, R. A. L., and Goetz, H., 1976, Cholecystokinin both stimulates and inhibits human food intake, Nature 261:713–715.PubMedCrossRefGoogle Scholar
  31. Vanderhaeghen, J. J., Signeau, J. C., and Gepts, W., 1975, New peptide in the vertebrate CNS reacting with antigastrin antibodies, Nature 257:604–605.PubMedCrossRefGoogle Scholar
  32. Vanderhaeghen, J. J., DeMey, J., Lotstra, F., and Giles, C., 1978, Localization of gas-trin-cholecystokinin like peptides in the brain and hypophysis of the rat. Symposium on neural peptides and proteins, Acta Neurol. (Belg.) 79:62–63.Google Scholar
  33. Vijayan, E., Samson, W. K., and McCann, S. M., 1979, In vivo and in vitro effects of cholecystokinin on gonadotropin, prolactin, growth hormone and thyrotropin release in the rat, Brain Res. 172:295–302.PubMedCrossRefGoogle Scholar
  34. Walsh, J. H., Lamers, C. B., and Valenzuela, J. E., 1982, Cholecystokinin octapeptide like immunoreactivity in human plasma, Gastroenterology 82:438–444.PubMedGoogle Scholar
  35. Whittaker, V. P., Michaelson, J. A., and Kirkland, R. J. A., 1964, The separation of synaptic vesicles from nerve-ending particles (synaptosomes), Biochem. J. 90:293–303.PubMedGoogle Scholar
  36. Young, J. D., Lazarus, L., Chisholm, D. J., and Atkinson, F. F. V., 1969, Radioimmunoassay of pancreozymin-cholecystokinin in human serum, J. Nucl. Med. 10:743.PubMedGoogle Scholar
  37. Zetler, G., 1981, Central effects of ceruletide analogues, Peptides 2:65–69.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Rosalyn S. Yalow
    • 1
  • John Eng
    • 1
  1. 1.Solomon A. Berson LaboratoryVeterans Administration Medical CenterBronxUSA

Personalised recommendations