Interconnections between Neurotransmitter- and Neuropeptide-Containlng Neurons Involved in Gonadotrophin Release in the Rat

  • Csaba Leranth
  • Neil J. Maclusky
  • Frederick Naftolin
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


A knowledge of interneuronal intrahypothalamic connections is essential for complete understanding of the neuroendocrine control of pituitary function. The Golgi studies of Szentagothai et al. (1972) and Millhouse (1973a,b) called attention to the abundant internal connections of hypothalamic nuclei. These early descriptions have been underscored by electrophysiological (Dyer, 1973; Harris and Sangh-era, 1974; Makara and Hodacs, 1975; Renaud, 1976, 1977), autoradiographic (Conrad and Pfaff, 1976a,b; Swanson, 1976; Saper et al., 1976; Krieger et al., 1979), and electron microscopic degeneration (Koves and Rethelyi, 1976; Za-borszky and Makara, 1979) studies, which have clearly established the complexity of the anatomic interrelationships among different hypothalamic neuronal populations.


Glutamic Acid Decarboxylase Synaptic Contact Arcuate Nucleus Preoptic Area Gonadal Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, B. A., and Crowley, W. R., 1984, Modulation of luteinizing hormone release and catecholamine activity by opiates in the female rat, Neuroendocrinology 38:248–253.PubMedCrossRefGoogle Scholar
  2. Bodoky, M., and Rethelyi, M., 1977, Dendritic arborization and axon trajectory of neurons in the hypothalamic arcuate nucleus of the rat, Exp. Brain Res. 28:543–555.PubMedCrossRefGoogle Scholar
  3. Brawer, J. R., 1971, The role of the arcuate nucleus in the brain-pituitary-gonad axis, J. Comp. Neurol. 143:411–46.PubMedCrossRefGoogle Scholar
  4. Chronwall, B. M., 1985, Anatomy and physiology of the neuroendocrine arcuate nucleus, Peptides 6:1–12.PubMedCrossRefGoogle Scholar
  5. Coen, C. W., Franklin, M., Laynes, R. W., and MacKinnon, P. C. B., 1980, Effects of manipulating serotonin on the incidence of ovulation in the rat, J. Endocrinol. 87:195–201.PubMedCrossRefGoogle Scholar
  6. Conrad, L. C. A., and Pfaff, D. W., 1976a, Efferents from medial basal forebrain and hypothalamus in the rat I. An autoradiographic study of the medial preoptic area, J. Comp. Neurol. 169:185–220.PubMedCrossRefGoogle Scholar
  7. Conrad, L. C. A., and Pfaff, D. W., 1976b, Efferents from medial basal forebrain and hypothalamus in the rat II. An autoradiographic study of the anterior hypothalamus, J. Comp. Neurol. 169:221–261.PubMedCrossRefGoogle Scholar
  8. Drouva, S.V., Epelbaum, J., Tapia-Arancibia, L., Laplante, E., and Kordon, C., 1981, Opiate receptors modulate LHRH and SRIF release from the mediobasal hypothalamus, Neuroendocrinology 32:163–167.PubMedCrossRefGoogle Scholar
  9. Dyer, R. G., 1973, An electrophysiological dissection of the hypothalamic regions which regulate the pre-ovulatory secretion of the luteinizing hormone in the rat, J. Physiol. (Lond.) 234:421–442.Google Scholar
  10. Ferin, M., Van Vugt, D., and Wardlaw, S., 1984, The hypothalamic control of the menstrual cycle and the role of endogenous opioid peptides, Recent Prog. Horm. Res. 40:441–485.PubMedGoogle Scholar
  11. Ford, D. H., and Milks, L. C., 1978, Smooth endoplasmic reticular whorls in neurons of the arcuate nucleus in male rats following adrenalectomy, Psychoneuroendocrinology 3:65–83.PubMedCrossRefGoogle Scholar
  12. Gallo, R. V., and Osland, R. B., 1976, Electrical stimulation of the arcuate nucleus in ovariectomized rats inhibits episodic luteinizing hormone (LH) release but excites LH release after estrogen priming, Endocrinology 99:659–668.PubMedCrossRefGoogle Scholar
  13. Geuze, H. J., Slot, J. W., Van Der Ley, P. A., and Scheffer, R. C., 1981, Use of colloidal gold particles in double-labelling immunoelectron microscopy of ultrathin frozen tissue sections, J. Cell Biol. 89:653–665.PubMedCrossRefGoogle Scholar
  14. Halàsz, B., 1969, The endocrine effects of isolation of the hypothalamus from the rest of the brain, in: Frontiers in Neuroendocrinology, Vol. 1 (W. F. Ganong and L. Martini, eds.), Oxford University Press, London, pp. 307–342.Google Scholar
  15. Halàsz, B., and Pupp, L., 1967, Hormone secretion of the anterior pituitary gland after physical interruption of all nervous pathways to the hypophysiotrophic area, Endocrinology 77:553–562.CrossRefGoogle Scholar
  16. Harris, C., and Sanghera, M., 1974, Projection of medial basal hypothalamic neurones to the preoptic anterior hypothalamic areas and paraventricular nucleus in the rat, Brain Res. 91:404–412.Google Scholar
  17. Hisano, S., Kawano, H., Nishiyama, T., and Daikoku, S., 1982, Immunoreactive ACTH/β-endorphin neurons in the tuberoinfundibular hypothalamus of rats, Cell Tissue Res. 224:303–314.PubMedCrossRefGoogle Scholar
  18. Kalra, S. P., and Crowley, W. R., 1982, Epinephrine synthesis inhibitors block naloxone-induced LH release, Endocrinology 111:1403–1405.PubMedCrossRefGoogle Scholar
  19. Kalra, S. P., and Simpkins, J. W., 1981, Evidence for noradrenergic mediation of opioid effects on luteinizing hormone secretion, Endocrinology 109:776–782.PubMedCrossRefGoogle Scholar
  20. King, J. C., Williams, T. H., and Gerall, A. A., 1974, Transformation of hypothalamic arcuate neurons. I. Changes associated with stages of the estrous cycle, Cell Tissue Res. 153:497–515.PubMedGoogle Scholar
  21. King, J. C., Tobet, S. A., Snavely, F. L., and Arimura, A. A., 1980, The LHRH system in normal and neonatally androgenized female rats, Peptides 1:85–100.CrossRefGoogle Scholar
  22. Kiss, J., 1984, Synaptic connections between serotonergic nerve terminals and LH-RH or catecholamine containing neurons in the rat hypothalamus, Neurosci. Lett. Suppl. 18:S186.Google Scholar
  23. Kiss, J., and Halàsz, B., 1985, Demonstration of serotonergic axons terminating on luteinizing hormone-releasing hormone neurons in the preoptic area of the rat using combination of immunocytochemistry and high resolution autoradiography, Neuroscience 14:69–78.PubMedCrossRefGoogle Scholar
  24. Kiss, J., Leranth, C., and Halàsz, B., 1984, Serotonergic endings of VIP-neurons in the suprachiasmatic nucleus and on ACTH-neurons in the arcuate nucleus of the rat hypothalamus. A combination of high resolution autoradiography and electron microscopic immunocytochemistry, Neurosci. Lett. 44:119–124.PubMedCrossRefGoogle Scholar
  25. Kizer, J. S., Palkovits, M., and Brownstein, M. J., 1976, The projections of the A8, A9 and A10 dopaminergic cell bodies: Evidence for a nigral-hypothalamic median eminence dopaminergic pathway, Brain Res. 108:363–370.PubMedCrossRefGoogle Scholar
  26. Koves, R., and Rethelyi, M., 1976, Direct neuronal connections from the medial preoptic area to the hypothalamic arcuate nucleus of the rat, Exp. Brain Res. 25:529–539.PubMedCrossRefGoogle Scholar
  27. Krieger, M. S., Conrad, L. C., and Pfaff, D. W., 1979, Autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus, J. Comp. Neurol. 183:785–816.PubMedCrossRefGoogle Scholar
  28. Lamberts, R., Vijayan, E., Gráf, M., Mansky, T., and Wuttke, W., 1983, Involvement of preop-tic-anterior hypothalamic GAB A neurons in the regulation of pituitary LH and prolactin release, Exp. Brain Res. 52:356–362.PubMedCrossRefGoogle Scholar
  29. Leranth, C., Sakamoto, H., MacLusky, N. J., Shanabrough, ML, and Naftolin, F., 1985a, Estrogen responsive cells in the arcuate nucleus of the rat contain glutamic acid decarboxylase (GAD): An electron microscopic immunocytochemical study, Brain Res. 331:376–381.PubMedCrossRefGoogle Scholar
  30. Leranth, C., Sakamoto, H., MacLusky, N. J., Shanabrough, M., and Naftolin, F., 1985b, Intrinsic tyrosine hydroxylase (TH) immunoreactive neurons synapse with TH immunopositive neurons in the rat arcuate nucleus, Brain Res. 331:371–375.PubMedCrossRefGoogle Scholar
  31. Leranth, C., Sakamoto, H., MacLusky, N. J., Shanabrough, M., and Naftolin, F., 1985c, Application of avidin-ferritin and peroxidase as contrasting electron-dense markers for simultaneous electron microscopic immunocytochemical labeling of glutamic acid decarboxylase and tyrosine hydroxylase in the rat arcuate nucleus, Histochemistry 82:165–168.PubMedCrossRefGoogle Scholar
  32. Leranth, C., MacLusky, N. J., Sakamoto, H., Shanabrough, M., and Naftolin, F., 1985d, Glutamic acid decarboxylase-containing neurons synapse on LHRH neurons in the rat medial preoptic area, Neuroendocrinology 40:536–539.PubMedCrossRefGoogle Scholar
  33. Leranth, C., Segura, L. M. G., Palkovits, M., MacLusky, N. J., Shanabrough, M., and Naftolin, F., 1985e, The LHRH-containing network in the preoptic area of the rat: Demonstration of LHRH-containing nerve terminals in synaptic contact with LHRH neurons, Brain Res. 345: 332–336.PubMedCrossRefGoogle Scholar
  34. Leranth, C., Palkovits, M., MacLusky, N. J., Shanabrough, M., and Naftolin, F., 1986, Normal numbers and morphology of LHRH immunoreactive axons in the medial basal hypothalami of rats with reproductive failure induced by estrogen injection, constant light exposure or neonatal testosterone administration, Neuroendocrinology (in press).Google Scholar
  35. Luine, V. N., McEwen, B. S., and Black, I. B., 1977, Effect of 17β-estradiol on hypothalamic tyrosine hydroxylase activity, Brain Res. 120:188–192.PubMedCrossRefGoogle Scholar
  36. Makara, G. B., and Hodacs, L., 1975, Rostral projections from the hypothalamic arcuate nucleus, Brain Res. 84:23–29.PubMedCrossRefGoogle Scholar
  37. Mansky, T., Mestres-Ventura, P., and Wuttke, W., 1982, Involvement of GABA in the feedback action of estradiol on gonadotropin and prolactin release: Hypothalamic GABA and catecholamine turnover rates, Brain Res. 231:353–364.PubMedCrossRefGoogle Scholar
  38. Merchenthaler, I., Kovacs, G., Lovasz, G., and Setalo, G., 1980, The preoption-infundibular LH-RH tract of the rat, Brain Res. 198:63–74.PubMedCrossRefGoogle Scholar
  39. Mezey, E., Kiss, J., O’Donohue, T., Eskay, R., Palkovits, M., 1985, Distribution of pro-opiomelan-ocortin derived peptides (ACTH, α-MSH, β-endorphin) in the rat hypothalamus, Brain Res. 328:341–348.PubMedCrossRefGoogle Scholar
  40. Millhouse, O. E., 1973a, The organization of the ventromedial hypothalamic nucleus, Brain Res. 55:71–87.PubMedCrossRefGoogle Scholar
  41. Millhouse, O. E., 1973b, Ventromedial hypothalamic afferents, Brain Res. 55:89–105.PubMedCrossRefGoogle Scholar
  42. Naftolin, F., and Brawer, J. R., 1978, The effect of estrogens on hypothalamic structure and function, Am. J. Obstet. Gynecol. 132:758–765.PubMedGoogle Scholar
  43. Naftolin, F., Bruhlman-Papayzan, M., Baetens, D., and Garcia-Segura, L. M., 1985, Neurons with whorl bodies have increased numbers of synapses, Brain Res. 329:289–293.PubMedCrossRefGoogle Scholar
  44. Neill, J. D., 1980, Neuroendocrine regulation of prolactin secretion, in: Frontiers in Neuroendocrinology, Vol. 6 (W. F. Ganong and L. Martini, eds.), Oxford University Press, London, pp. 129–156.Google Scholar
  45. Nilaver, G., Zimmerman, E. A., Defendi, R., Liotta, A., Krieger, D. T., and Brownstein, M. J., 1979, Adrenocorticotropin and beta-lipotropin in the hypothalamus. Localization in the same arcuate neurons by sequential immunocytochemical procedures, J. Cell Biol. 81:50–58.PubMedCrossRefGoogle Scholar
  46. O’Donohue, T. L., Miller, R. L., and Jacobowitz, D. M., 1979, Identification, characterization and stereotaxic mapping of intraneural α-melanocyte-stimulating hormone like immunoreactive peptides in discrete regions of the rat brain, Brain Res. 176:101–123.PubMedCrossRefGoogle Scholar
  47. Palkovits, M., 1978, Topography of chemically identified neurons in the central nervous system: A review, Acta Morphol. Acad. Sci. Hung. 26:211–290.PubMedGoogle Scholar
  48. Palkovits, M., 1980, Topography of chemically identified neurons in the central nervous system: Progress in 1977–1979, Med. Biol. 58:188–227.PubMedGoogle Scholar
  49. Palkovits, M., Fekete, M., Makara, G. B., and Herman, J. P., 1977, Total and partial hypothalamic deafferentations for topographical identification of catecholaminergic innervations of certain preoptic and hypothalamic nuclei, Brain Res. 127:127–136.PubMedCrossRefGoogle Scholar
  50. Pelletier, G., 1984, Localization and interactions of RF neurons in the central nervous system, in: Proceedings of the 7 th International Congress of Endocrinology, Quebec, Canada, Excerpta Medica International Congress Series 652, Amsterdam, p. 39.Google Scholar
  51. Pfaff, D. W., 1980, Estrogens and Brain Function, Springer-Verlag, New York.CrossRefGoogle Scholar
  52. Pickel, V. M., Joh, T. H., and Reis, D. J., 1975, Ultrastructural localization of tyrosine hydroxylase in noradrenergic neurons in brain, Proc. Natl. Acad. Sci. U.S.A. 72:659–663.PubMedCrossRefGoogle Scholar
  53. Rance, N., Wise, P. M., Selmanoff, M. K., and Barraclough, C. A., 1981, Catecholamine turnover rates in discrete hypothalamic areas and associated changes in median eminence luteinizing hormone-releasing hormone and serum gonadatropins on proestrus and diestrous day 1, Endocrinology 108:1795–1802.PubMedCrossRefGoogle Scholar
  54. Renaud, L. P., 1976, Tuberoinfundibular neurons in the basomedial hypothalamus of the rat: Electro-physiological evidence for axon collaterals to hypothalamic and extrahypothalamic areas, Brain Res. 105:59–72.PubMedCrossRefGoogle Scholar
  55. Renaud, L. P., 1977, Influence of medial preoptic anterior hypothalamic area stimulation on the excitability of mediobasal hypothalamic neurons in the rat brain, J. Physiol. (Lond.) 264:541–564.Google Scholar
  56. Sakamoto, H., Leranth, C., MacLusky, N. J., Hurlburt, C., and Naftolin, F., 1984, Estrogen (E) inhibition of the rat brain dopamine system is area specific and reversible, Soc. Neurosci. Abstr. 14(7) p. 478.Google Scholar
  57. Saper, C. B., Swanson, L. B., and Cowan, W. M., 1976, The afferent connections of the ventromedial nucleus of the hypothalamus of the rat, J. Comp. Neurol. 169:409–442.PubMedCrossRefGoogle Scholar
  58. Sar, M., 1984, Estradiol is concentrated in tyrosine hydroxylase-containing neurons of the hypothalamus, Science 223:938–940.PubMedCrossRefGoogle Scholar
  59. Sar, M., Stumpf, W. E., and Tappaz, M. L., 1983, Localization of 3H estradiol in preoptic GABA-ergic neurons, Fed. Proc. 42:495.Google Scholar
  60. Shivers, B. D., Harlan, R. E., Morrell, J. I., and Pfaff, D. W., 1983, Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurones, Nature 304:345–347.PubMedCrossRefGoogle Scholar
  61. Silverman, A.-J., 1984, Luteinizing hormone releasing hormone containing synapses in the diagonal band and preoptic area of the guinea pig, J. Comp. Neurol. 227:452–458.PubMedCrossRefGoogle Scholar
  62. Sirinathsinghji, D. J. S., 1983, β-Endorphin regulates lordosis in female rats by modulating LHRH release, Nature 301:62–64.PubMedCrossRefGoogle Scholar
  63. Swanson, L. W., 1976, Autoradiographic study of the efferent connections of the preoptic region in the rat, J. Comp. Neurol. 167:227–256.PubMedCrossRefGoogle Scholar
  64. Szentagothai, J., 1969, The synaptic architecture of the hypothalamo-hypophyseal neuron system, Acta Neurol. (Belg.) 69:453–468.Google Scholar
  65. Szentagothai, J., Flerko, B., Mess, B., and Halàsz, B., 1972, Hypothalamic Control of the Anterior Pituitary, Akademiai Kiado, Budapest, pp. 40–68.Google Scholar
  66. Tappaz, M. L., Wassef, M., Oertel, W. H., Paut, L., and Pujol, J. F., 1983, Light and electron microscopic immunochemistry of glutamic acid decarboxylase (GAD) in the basal hypothalamus: Morphologic evidence for neuroendocrine gamma-aminobutyrate (GABA), Neuroscience 9:271–287.PubMedCrossRefGoogle Scholar
  67. Van den Pol, A. N., 1985, Silver-intensified gold and peroxidase as dual ultrastructural immunolabels for pre-and postsynaptic neurotransmitters, Science 228:332–335.PubMedCrossRefGoogle Scholar
  68. Vijayan, E., and McCann, S. M., 1978, The effect of intraventricular injection of gamma-aminobutyric acid (GABA) on prolactin and gonadotropin release in conscious female rats, Brain Res. 155:35–42.PubMedCrossRefGoogle Scholar
  69. Wallis, C., and Luttge, W. G., 1980, Influence of estrogen and progesterone on glutamic acid decarboxylase activity in discrete regions of rat brain, J. Neurochem. 34:609–613.PubMedCrossRefGoogle Scholar
  70. Watson, G. J., and Akil, H., 1982, Opioid peptides and related substances: Immunocytochemistry, in: Neurosecretion and Brain Peptides (J. B. Martin, J. Reichlin, and K. L. Bictes, eds.), Raven Press, New York, pp. 77–78.Google Scholar
  71. Watson, S. J., Richard, C. W., and Barchas, J. D., 1978, Adrenocorticotropin in rat brain: Immuno-cytochemical localization in cells and axons, Science 200:1180–1182.PubMedCrossRefGoogle Scholar
  72. Wilson, R. C., Kesner, J. S., Kaufman, J. M., Uemura, T., Akema, T., and Knobil, E., 1984, Central electrophysiological correlates of pulsatile luteinizing hormone secretion in the rhesus monkey, Neuroendocrinology 39:256–560.PubMedCrossRefGoogle Scholar
  73. Zaborzsky, L., 1982, Afferent connections of the medial basal hypothalamus, in: Advances in Anatomy, Embryology and Cell Biology, Vol. 69 (W. Hild, J. van Limborgh, R. Ortmann, J. E. Pauly, and T. H. Schiebler, eds.), Springer-Verlag, New York.Google Scholar
  74. Zaborszky, L., and Leranth, C., 1985, Simultaneous ultrastructural demonstration of retrogradely transported horseradish peroxidase and choline acetyltransferase immunoreactivity, Histochemistry 82:529–537.PubMedCrossRefGoogle Scholar
  75. Zaborszky, L., and Makara, G. B., 1979, Intrahypothalamic connections: An electron microscopic study of the rat, Exp. Brain Res. 34:201–215.PubMedCrossRefGoogle Scholar
  76. Zaborszky, L., Leranth, C., and Heimer, L., 1984, Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells of the rostral forebrain, Neurosci. Lett. 521:219–225.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Csaba Leranth
    • 1
  • Neil J. Maclusky
    • 1
  • Frederick Naftolin
    • 2
  1. 1.Department of Obstetrics and Gynecology and Section of NeuroanatomyYale University School of MedicineNew HavenUSA
  2. 2.Department of Obstetrics and GynecologyYale University School of MedicineNew HavenUSA

Personalised recommendations