Advertisement

Kinins IV pp 563-570 | Cite as

3H-Bradykinin Binding Site Localization in Guinea Pig Urinary System

  • Donald C. Manning
  • Solomon H. Snyder
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)

Abstract

Bradykinin (BK) causes vasodilation and increases free water and sodium excretion in the kidney and stimulates smooth muscle contraction in the ureter and bladder. Several proposed sites of action for BK include the renal medullary collecting duct, renal blood vessels and the ureter and bladder smooth muscle. This study employs 3H-BK autoradiography to localize the sites of BK action. 3H-BK binding sites in the kidney are localized in the medullary interstitium where BK may produce prostaglandins which mediate its blood flow, natriuretic and diuretic effects. 3H-BK binding sites in the ureter and bladder are localized in the lamina propria below the basal epithelial layer and absent over the muscle layers suggesting an indirect action on urinary tract smooth muscle.

Keywords

Lamina Propria Bladder Smooth Muscle Urinary Kallikrein Autoradiographic Localization Urinary Bladder Smooth Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Baraclough and I. H. Mills, Effect of bradykinin on renal function, Clin. Sci., 28: 69–74, (1965).Google Scholar
  2. 2.
    M. Mariiygrez, P. Cottone, and O. A. Carretero, Evidence for an involvement of kinins in regulation of sodium excretion, Am. J. Physiol., 223: 797–796, (1972).Google Scholar
  3. 3.
    K. Yamada, W. W. Schulz, D. S. Page, and E. G. Erdos, Kallikrein and prekallikrein on the basolateral membrane of rat kidney tubules, Hypertension 3 (suppl II):II-59-II-64, (1981).Google Scholar
  4. 4.
    T. B. Orstavik, K. Nustad, P. Brandtzaeg, and J. V. Pierce, Cellular origin of urinary kallikreins, J. Histochem. Cytochem., 24: 1037–1039, (1976).CrossRefGoogle Scholar
  5. 5.
    C. D. Figueroa, I. Caorsi, J. Subiabre, and C. P. Vio, Immunoreactive kallikrein localization in the rat kidney, J. Histochem. Cytochem., 32: 117–121, (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Proud, M. Perkins, J. V. Pierce, K. N. Yates, P. F. Highet, P. L. Herring, M. M. Mangkonkonok, R. Bahu, F. Carone, and J. J. Pisano, Characterization and localization of human renal kininogen, J. Biol. Chem., 256: 10634–10639, (1981).PubMedGoogle Scholar
  7. 7.
    P. E. Ward, E. G. Erodos, C. D. Gedney, R. M. Dowben, and R. C. Reynolds, Isolation of membrane bound renal enzymes that metabolize kinins and angiotensin, Biochem. J., 157: 643–650, (1976).PubMedGoogle Scholar
  8. 8.
    A. Nasjletti, and K. U. Malik, The renal kallikrein-kinin and prostaglandin systems interaction, Ann. Rev. Physiol., 43: 597–609, (1981).CrossRefGoogle Scholar
  9. 9.
    R. M. Zusman and H. R. Keiser, Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture, J. Clin. Invest., 60: 215–223, (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    F. C. Grenier, T. E. Rollins, and W. L. Smith, Kinin-induced prostaglandin synthesis by renal papillary collecting tubule cells in culture, Ann. J. Physiol., 241: F94–F104, (1981).Google Scholar
  11. 11.
    G. Falconier-Erspamer, L. Negri, and D. Piccinelli, The use of preparations of urinary bladder smooth muscle for bioassay of discrimination between polypeptides, Naunyn-Schmiedeberg’s Arch. Pharm., 279: 61–74, (1973).Google Scholar
  12. 12.
    S. Matsumura, N. Taira, and K. Hashimoto, The pharmacological behavior of the urinary bladder and its vasculature of the dog, Tohoku J. Exp. Med., 96: 247–258, (1968).Google Scholar
  13. 13.
    M. Marin-Grez, G. Bonne, and F. Gross, Ureteral contractions induced by rat urine in vitro: Probable involvement of renal kallikrein, Experentia, 36: 865–866, (1980).CrossRefGoogle Scholar
  14. 14.
    P. Labay and S. Boyarsky, Bradykinin: Effect on ureteral peristalsis, Science, 151: 78, (1966).CrossRefGoogle Scholar
  15. 15.
    D. C. Manning, R. Vavrek, J. M. Stewart, and S. H. Snyder, Multiple bradykinin binding sites with picomolar affinities, In preparation.Google Scholar
  16. 16.
    W. S. Young and M. J. Kuhar, A new method for receptor autoradiography: [3H]opioid receptors in rat brain, Brain Res., 179: 255–270, (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Tomita and J. J. Pisano, Binding of pH]bradykinin in isolated nephron segments of the rabbit, Am. J. Physiol., 246: F732–F737, (1984).PubMedGoogle Scholar
  18. 18.
    R. Gareia, G. Thibault and J. Genest, Lymphatic, renal and urinary kallikreins in the rat, Am. J. Physiol., 247: R29–R33, (1984).Google Scholar
  19. 19.
    Proud, S. Nakamura, F. A. Carone, P. L. Herring, M. Kawamura, T. Inagami, and J. J. Pisano, Kallikrein-kinin and renin angiotensin systems in rat renal lymph, Kidney Int., 25: 880–885, (1984).Google Scholar
  20. 20.
    J. T. Velardo, Histology of the ureter, in: The ureter, 2nd ed., H. Bergman, (ed.), Springer-Verlag, pp. 13–15, (1981).Google Scholar
  21. 21.
    M. Aung-Khin, The innervation of the ureter, Invest. Urol., 10: 370–378, (1973).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Donald C. Manning
    • 1
  • Solomon H. Snyder
    • 1
  1. 1.Department of NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations