Kinins IV pp 381-388 | Cite as

Kininase One-An′ -A-Half: The Newest Member of the Kininase Family

  • Randal A. Skidgel
  • Ervin G. Erdös
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)


A kininase I-like enzyme (carboxypeptidase) was purified to homogeneity from human urine and compared to the 48,000 mol. wt. (48K) active subunit of carboxypeptidase N. The urinary carboxypeptidase had a mol. wt. of 73,000 in gel filtration and 76,000 in SDS-polyacrylamide gel electrophoresis. It had a pH optimum of 7.0 and differed from the 48K subunit in stability, susceptibility to trypsin, and enzymatic activity. The urinary enzyme did not cross-react with antibody to carboxypeptidase N in “Western blotting”. Urine from a patient genetically deficient in plasma carboxypeptidase N (21% of normal) contained normal levels of urinary carboxypeptidase with similar properties to that from pooled human urine.

Membrane fractions from several tissues contained a similar carboxypeptidase activity. The activity was highest in a microvillous membrane fraction from human placenta (65 nmol/min/mg with Bz-Gly-Lys as substrate). High specific activities were also found in membrane fractions of human kidney (18 nmol/min/mg) and lung (8 nmol/min/mg). The membrane-bound enzyme was distinguished from lysosomal and catheptic carboxypeptidases as well as “enkephalin convertase” by the use of specific inhibitors.

These results show that urine contains a carboxypeptidase capable of cleaving arginine or lysine from the C-terminus of peptides. The enzyme does not arise from plasma carboxypeptidase N, but may be released into the urine from the renal brush border.


Brush Border Neutral Endopeptidase Urinary Enzyme Carboxypeptidase Activity Acid Carboxypeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Erdos, Kininases, in: “Handbook of Experimental Pharmacology,” E. G. Erdos, ed., Vol. 25, Springer-Verlag (1979).Google Scholar
  2. 2.
    R. A. Skidgel, A. R. Johnson, and E. G. Erdos, Hydrolysis of opioid hexapeptides by carboxypeptidase N. Presence of carboxypeptidase in cell membranes, Biochem. Pharmacol., 33: 3471–3478 (1984).Google Scholar
  3. 3.
    R. A. Skidgel, A. R. Johnson, and E. G. Erdos, Conversion of encephalin hexapeptides to enkephalin by human plasma and tissue carboxypeptidases, Fed. Proc., 43: 651 (1984).Google Scholar
  4. 4.
    R. A. Skidgel and E. G. Erdos, Novel activity of human angiotensin I converting enzyme: Release of the N- and C-terminal tripeptides from the luteinizing hormone-releasing hormone, Proc. Natl. Acad. Sci. (In press).Google Scholar
  5. 5.
    R. A. Skidgel, S. Engelbrecht, A. R. Johnson, and E. G. Erdos, Hydrolysis of substance P and neurotensin by converting enzyme and neutral endo- peptidase, Peptides, 5: 769–776 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    E. G. Erdos, A. R. Johnson, and N. T. Boyden, Hydrolysis of encephalin by cultured human endothelial cells and by purified peptidyl dipepti- dase, Biochem. Pharmacol., 27: 843–848 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    M. A. Kerr and a. J. Kenny, The purification and specificity of a neutral endopeptidase from rabbit kidney brush border, Biochem. J., 137: 477–488 (1974).PubMedGoogle Scholar
  8. 8.
    R. Matsas, I. S. Fulcher, A. J. Kewnny, and A. J. Turner, Substance P and (Leu)enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli, Proc. Natl. Acad. Sci. USA, 80: 3111–3115 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    J. T. Gafford, R. A. Skidgel, E. G. Erdos, and L. B. Hersh, Human kidney “enkephalinase”, a neutral metalloendopeptidase that cleaves active peptides, Biochemistry, 22: 3265–3271 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Levin, R. A. Skidgel, and E. G. Erdos, Isolation and characterization of the subunits of human plasma carboxypeptidase N (kininase I), Proc. Natl. Acad. Sci. USA, 79: 4618–4622 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Werle and E. G. Erdos, Uber eine neue blutdrucksenkende, darm- und uteruserregende Substanz im menschlichen Urin, Arch. Exper. Path, und Pharmakol., 223: 234–243 (1954).Google Scholar
  12. 12.
    R. A. Skidgel, R. M. Davis, and E. G. Erdos, Purification of a human urinary carboxypeptidase(kinase) distinct from carboxypeptidases A, B or N. Anal. Biochem., 140: 520–531 (1984).CrossRefGoogle Scholar
  13. 13.
    K. P. Mathews, P. M. Pan, N. J. Gardner, and T. E. Hugli, Familial carboxypeptidase N deficiency, Ann. Intern. Med., 93: 443–445 (1980).PubMedGoogle Scholar
  14. 14.
    T. H. Plummer and T. J. Ryan, A potent mercapto bi-product analogue inhibitor for human carboxypeptidase N, Biochem, Biophys, Res Commun., 98: 448–454 (1981).CrossRefGoogle Scholar
  15. 15.
    L. M. Greenbaum and R. Sherman, Studies on catheptic carboxypeptidase, J. Biol. Chem., 237: 1082–1085 (1962).PubMedGoogle Scholar
  16. 16.
    L. D. Fricker and S. H. Snyder, Enkephalin convertase: Purification and characterization of a specific enkephalin-synthesizing carboxy-peptidase localized to adrenal chromaffin granules, Proc. Natl. Acad. Sci. USA, 79: 3886–3890 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Porthe, A. Valette, A. Moisand, M. Tafani, and J. Cros, Localization of human placental opiate binding sites on the syncitial brush border membrane, life Sci., 31:2647–2654 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Magnan, S. J. Paterson, and H. W. Kosterlitz, The interaction of (Met5)enkephalin and (Leu5)enkephalin sequences, extended at the C-terminus, with the y-6-and k-binding sites in the guinea pig brain, Life Sci., 31: 1359–1361 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    A. R. Johnson, R. A. Skidgel, J. T. Gafford, and E. G. Erdos, Enzymes in placental microvilli: Angiotensin I converting enzyme, angioten- sinase A, carboxypeptidase, and neutral endopeptidase (“enkephalinase”), Peptides, 5: 789–796 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    E. G. Erdos, Enzymes that inactivate polypeptides, in: “Metabolic Factors Controlling Duration of Drug Action,” B. B. Brodie and E. G. Erdos, eds., Pergamon Press (1962).Google Scholar
  21. 21.
    E. G. Erdos, A. G. Renfrew, E. M. Sloane, and J. R. Wohler, Enzymatic studies on bradykinin and similar peptides, Ann. N.Y. Acad. Sci., 104: 222–234 (1963).CrossRefGoogle Scholar
  22. 22.
    H. Y. T. Yang and E. G. Erdos, Second kininase in human blood plasma, Nature, 215: 1402–1403 (1967).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Y. T. Yang, E. G. Erdos, and Y. Levin, A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin, Biochim. Biophys. Acta, 214: 374–376 (1970).CrossRefGoogle Scholar
  24. 24.
    C. E. Odya, P. Moreland, J. M. Steward, J. Barabe, and D. C. Regoli, Development of a radioimmunoassay for (des-Arg9)-bradykinin, Biochem. Pharmacol., 32: 337–342 (1983).Google Scholar
  25. 25.
    D. Regoli and J. Barabe, Pharmacology of bradykinin and related kinins, Pharmac. Rev., 32: 1–46 (1980).Google Scholar
  26. 26.
    T. E. Hugli, The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a, in: “Critical Reviews in Immunology, Vol. 1,” M. Z. Atassi, ed., Chemical Rubber Co. (1981).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Randal A. Skidgel
    • 1
    • 2
  • Ervin G. Erdös
    • 1
    • 2
  1. 1.Department of PharmacologyThe University of Texas Health Science Center at DallasDallasUSA
  2. 2.Department of Internal MedicineThe University of Texas Health Science Center at DallasDallasUSA

Personalised recommendations