Kinins IV pp 265-272 | Cite as

Kallikrein and Kinins Independently Stimulate Renin Release from Isolated Rat Glomeruli

  • William H. Beierwaltes
  • Oscar A. Carretero
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)


We studied the interaction between kallikrein, kinins, and renin release in isolated rat renal glomeruli and their attendant arterioles. Purified hog kallikrein (170 mEU/ml) significantly stimulated renin release 86% (p 0.025) above control. Inactivation of kallikrein by PMSF or inhibition with aprotinin blocked kallikrein stimulation of renin release. Partially purified rat submandibular gland kallikrein (160 mEU/ml) also increased renin by 87% (p 0.025). Superfusion of glomeruli with brady-kinin (10-5 M) significantly increased renin release by 108% (p 0.025), and lys-bradykinin (10-5 M) similarly increased renin by 155% (p 0.025). Neither of the kinin analogues, des-arg9 bradykinin or tyr8 bradykinin (at 10-5 M), were able to alter renin released from isolated glomeruli. The vasodilator acetylcholine (10-5 m) had no effect upon renin release from glomeruli. No kininogen could be detected in glomeruli. Kallikrein superfusion did not result in any measurable kinin generation. We could not detect inactive renin in superfusate or glomeruli after renin activation with either kallikrein or trypsin. These results suggest that kallikrein stimulates renin release independent of kininogenase activity and that this stimulation does not appear to be due to activation of inactive renin. Further, we find that kinins can directly stimulate renin release.


Renin Release Kidney Slice Urinary Kallikrein Glandular Kallikrein Stimulate Renin Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Yang, E. Erdos, and Y. Levin, A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin, Biochem. Biophys. Acta, 214: 374–376 (1970).CrossRefGoogle Scholar
  2. 2.
    F. Derkx, B. Bouma, M. Schalekamp, and M. Schalekamp, An intrinsic factor XII-prekallikrein-dependent pathway activates the human plasma renin-angiotensin system, Nature, 280: 315–316 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    J. E. Sealey, S. A. Atlas, and J. H. Laragh, Linking the kallikrein and renin systems via activation of inactive renin, Am. J. Med., 65: 994–1000 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Suzuki, R. Franco-Saenz, S. Y. Tan, and P. J. Mulrow, Direct action of rat urinary kallikrein on rat kidney to release renin, J. Clin. Invest., 66: 757–762 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Suzuki, R. Franco-Saenz, S. Y. Tan, and P. J. Mulrow, Direct action of kallikrein and other proteases on the renin-angiotensin system, Hypertension, 3(sp.1):1-13-17 (1981).Google Scholar
  6. 6.
    Y. Doi, A. Hinko, R. Franco-Saenz, and P. J. Mulrow, Reexamination of the effect of urinary kallikrein on renin release: Evidence that kallikrein does not release renin but protects renin from destruction, Endo., 113: 114–118 (1983).CrossRefGoogle Scholar
  7. 7.
    M. Rocha e Silva, Angiotensin and bradykinin: A study in contrasts, Can. Med. Assoc. J., 90: 307–311 (1964).Google Scholar
  8. 8.
    P. A. Johnston, N. S. Perrin, D. B. Bernard, and N. G. Levinski, Control of rat renal vascular resistance at reduced perfusion pressure, Circ. Res., 48: 734–739 (1981).Google Scholar
  9. 9.
    W. Flamenbaum, J. Gagnon, and P. Ramwell, Bradykinin-induced renal hemodynamic alterations: Renin and prostaglandin relationships, Am. J. Physiol., 237: F433–F440 (1979).PubMedGoogle Scholar
  10. 10.
    W. H. Beierwaltes, S. Schryver, P. Olson, and J. Romero, Interaction of the prostaglandin and renin-angiotensin systems in isolated rat glomeruli, Am. J. Physiol., 239: F602–F608 (1980).PubMedGoogle Scholar
  11. 11.
    W. H. Beierwaltes, J. Prada, and 0. A. Carretero, Kinin stimulation of renin release in isolated rat glomeruli, Am. J. Physiol., (In press) (1985).Google Scholar
  12. 12.
    R. M. Edwards, Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels, Am. J. Physiol., 244: F526–F534 (1983).PubMedGoogle Scholar
  13. 13.
    J. E. Sealey, S. A. Atlas, J. A. Laragh, N. B. Oza, and J. W. Ryan, Activation of a prorenin-like substance in human plasma by trypsin and by urinary kallikrein, Hypertension, 1: 179–189 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    O. A. Carretero, G. Enzmann, C. Polomski, N. B. Oza, and A. Schork, Role of the adrenal glands in the development of severe hypertension, Circ. Res., 33: 516–520 (1973).Google Scholar
  15. 15.
    E. Haber, D. Loerner, L. B. Page, B. Kliman, and A. Purnode, Application of a radioimmunoassay for angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects, J. Clin. Endocrinol., 29: 1329–1355 (1969).CrossRefGoogle Scholar
  16. 16.
    V. H. Beaven, J. V. Pierce, and J. J. Pisano, A sensitive isotopic procedure for the assay of esterase activity: Measurement of human urinary kallikrein, Clin. Chim. Acta., 32: 67–73 (1971).CrossRefGoogle Scholar
  17. 17.
    J. C. Fasciolo, J. Espada, and O. A. Carretero, The estimation of bradykinin content of the plasma, Acta. Phys. Lat. Am., 13: 215–220 (1963).Google Scholar
  18. 18.
    O. A. Carretero, N. B. Oza, A. Piwonska, T. Ocholik, and A. G. Scicli, Measurement of urinary kallikrein activity by kinin radioimmunoassay, Biochem. Pharm., 25: 599–606 (1976).Google Scholar
  19. 19.
    W. H. Beierwaltes, J. Prada, and 0. A. Carretero, Effect of glandular kallikrein on renin release in isolated rat glomeruli, Hypertension, 7 (In press) (1985).Google Scholar
  20. 20.
    I. Morita, T. Kanayasu, and S. Murota, Kallikrein stimulates prostacyclin production in bovine vascular endothelial cells, Biochim. Biophys. Acta, 792: 304–309 (1984).CrossRefGoogle Scholar
  21. 21.
    W. H. Beierwaltes, S. Schryver, E. Sanders, J. Strand, and J. C. Romero, Renin release selectively stimulated by prostaglandin 12 in isolated rat glomeruli, Am. J. Physiol., 243: F276–F283 (1982).PubMedGoogle Scholar
  22. 22.
    K. Omata, O. A. Carretero, A. G. Scicli, and B. A. Jackson, Localization of active and inactive kallikrein (kininogenase activity) in the microdissected rabbit nephron, Kidney Int., 22: 602–607 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Barajas, and K. Powers, The structure of the juxtaglomerular apparatus (JGA) and the control of renin secretion: An update. J. Hypertension, 2 (sp.1): 3–12 (1984).Google Scholar
  24. 24.
    O. A. Carretero and W. H. Beierwaltes, Effect of glandular kallikrein, kinins and aprotinin (a serine protease inhibitor) on renin release, J. Hypertension, 2: 125–130 (1984).Google Scholar
  25. 25.
    P. E. Ward, R. C. Schultz, R. C. Reynolds, and E. G. Erdos, Metabolism of kinins and angiotensins in the isolated glomerulus and brush border of rat kidney, Lab. Invest., 36: 599–606 (1977).Google Scholar
  26. 26.
    A. G. Scicli, T. Mindroiu, G. Scicli, and O. A. Carretero, Blood kinins, their concentration in normal subjects and in patients with congenital deficiency in plasma prekallikrein and kininogen, J. Lab. Clin. Med., 100: 81–93 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • William H. Beierwaltes
    • 1
  • Oscar A. Carretero
    • 1
  1. 1.Division of Hypertension ResearchHenry Ford HospitalDetroitUSA

Personalised recommendations