Kinins IV pp 255-263 | Cite as

Effect of Sodium Restriction and Corticosteroids on Glandular Kallikrein in Plasma and in the Submandibular Gland

  • Shinji Seto
  • Sara F. Rabito
  • Subir R. Maitra
  • Jonathan N. Wu
  • Oscar A. Carretero
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)


We investigated whether sodium restriction or mineralocorticoid influence the release of submandibulary kallikrein into the blood and/or the concentration of kallikrein in glandular tissue. For this we measured submandibular gland blood flow, arterial and submandibular gland venous kallikrein, and kallikrein in glandular homogenates of male Sprague-Dawley rats after one week of either low sodium or deoxycorticosterone acetate (DOCA) treatment. We also studied the effect of dexamethasone on the concentration of kallikrein in gland tissue and peripheral plasma. Kallikrein in plasma and in homogenates was measured by radioimmunoassay. Blood flow was determined by timed collections of venous outflow. Kallikrein release was calculated as the arteriovenous difference in kallikrein times the rate of submandibular gland plasma flow. The concentration of kallikrein in arterial plasma, the basal submandibular kallikrein release into blood, and the concentration of kallikrein in submandibular gland tissue were all higher during low sodium than during normal sodium intake (20.1 ± 3.6 ng/ml vs 10.7 ± 0.5, p< 0.05; 0.40 ± 0.09 ng/min/100 g bw vs 0.18 ± 0.02, p< 0.05, and 81.6 ± 5.5 lig/mg protein vs 65.1 ± 4.0, p< 0.05, respectively). In contrast, DOCA treatment did not affect the concentration of kallikrein in arterial plasma, the basal release of kallikrein from the submandibular gland into blood, or the concentration of kallikrein in the gland. Dexamethasone in doses that did not affect the normal growth of the animals had no significant effect on the concentration of kallikrein either in submandibular gland tissue or in peripheral plasma. We concluded that sodium restriction increases the kallikrein content of the submandibular gland and its release into blood, but this effect is probably not caused by increases in mineralocorticoid levels. The increased release of submandibular gland kallikrein into blood may explain, in part, the increased plasma levels of kallikrein observed during sodium restriction.


Sodium Intake Sodium Restriction Arterial Plasma Peripheral Plasma Parotid Saliva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Bhoola, M. Lemon, and R. Matthews, Kallikrein in exocrine glands, in: “Handbook of Experimental Pharmacology,” E. G. Erdos, ed., Springer (1979).Google Scholar
  2. 2.
    S. F. Rabito, V. Amin, A. G. Scicli, and O. A. Carretero, Glandular kallikrein in plasma and urine: Evaluation of a direct RIA for its determination, in: “Kinins II: Biochemistry, Pathophysiology, and Clinical Aspects,” S. Fujii, H. Moriya, and T. Suzuki, eds., Plenum Press, Vol. 120A (1979).Google Scholar
  3. 3.
    K. Nustad, K. Gautvik, and T. B. Orstavik, Radioimmunoassay of rat submandibular gland kallikrein and the detection of immunoreactive antigen in blood, in: “Kinins II: Biochemistry, Pathophysiology and Clinical Aspects,” S. Fujii, H. Moriya, and T. Suzuki, eds., Plenum Press, Vol. 120A (1979).Google Scholar
  4. 4.
    S. F. Rabito, A. G. Scicli, and O. A. Carretero, Immunoreactive glandular kallikrein in plasma, in: “Enzymatic Release of Vasoactive Peptides,” F. Gross and G. Vogel, eds., Raven Press (1980).Google Scholar
  5. 5.
    W. J. Lawton, D. Proud, M. E. Freeh, J. V. Pierce, H. R. Keiser, and J. J. Pisano, Characterization and origin of immunoreactive glandular kallikrein in rat plasma, Biochem. Pharmacol., 30: 1731–1737 (1981).Google Scholar
  6. 6.
    S. F. Rabito, A. G. Scicli, V. Kher, and O. A. Carretero, Immunoreactive glandular kallikrein in rat plasma: A radioimmunoassay for its determination, Am. J. Physiol., 242: H602–H610 (1982).PubMedGoogle Scholar
  7. 7.
    S. F. Rabito, T. B. Orstavik, A. G. Scicli, A. Shork, and O. A. Carretero, Role of the autonomic nervous system in the release of rat submandibular gland kallikrein into the circulation, Circ. Res., 52: 635–641 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    S. M. Hilton and G. P. Lewis, The relationship between activity, brady-kinin formation and functional vasodilatation in the submandibular salivary gland, J. Physiol., (London), 134: 471–483 (1956).Google Scholar
  9. 9.
    S. M. Hilton and M. Jones, The role of the plasma kinins in functional vasodilatation in the pancreas, J. Physiol., (London), 195: 521–533 (1968).Google Scholar
  10. 10.
    K. Gautvik, Parasympathetic neuro-effector transmission and functional vasodilatation in the submandibular salivary gland of cats, Acta. Physiol. Scand., 79: 204–215 (1970).CrossRefGoogle Scholar
  11. 11.
    K. Gautvik, Studies on kinin formation in functional vasodilatation of the submandibular salivary gland in cats, Acta. Physiol. Scand., 79: 174–187 (1970).CrossRefGoogle Scholar
  12. 12.
    T. B. Orstavik, O. A. Carretero, and A. G. Scicli, Kallikrein-kinin system in regulation of submandibular gland blood flow, Am. J. Physiol., 242: H1010–H1014 (1982).PubMedGoogle Scholar
  13. 13.
    R. G. Geller, H. S. Margolius, J. J. Pisano, and H. R. Keiser, Effects of mineralocorticoids, altered sodium intake, and adrenalectomy on urinary kallikrein in rats, Clin. Res., 31: 857–861 (1972).Google Scholar
  14. 14.
    D. Horwitz, D. Proud, W. J. Lawton, K. N. Yates, P. Highet, J. J. Pisano, and H. R. Keiser, Effects of restriction of sodium or administration of fludrocortisone on parotid salivary kallikrein in man, J. Lab. Clin. Med., 100: 146–154 (1982).PubMedGoogle Scholar
  15. 15.
    S. F. Rabito, A. G. Scicli, and O. A. Carretero, Immunoreactive glandular kallikrein in plasma during alterations of urinary kallikrein excretion, Hypertension, 5: V153–V157 (1983).PubMedGoogle Scholar
  16. 16.
    J. Colina-Chourio, J. C. McGiff, and A. Nasjletti, Effects of cortico steroids on urinary kallikrein excretion, Clin. Res., 22: 596 (Abstract) (1974).Google Scholar
  17. 17.
    C. P. Vio, J. S. Roblero, and H. R. Croxatto, Dexamethasone, aldosterone and kallikrein release by isolated rat kidney, Clin. Sci., 61: 241–243 (1981).Google Scholar
  18. 18.
    Y. Noda, K. Yamada, R. Igic, and E. G. Erdos, Regulation of rat urinary and renal kallikrein and prekallikrein by corticosteroids, Proc. Natl. Acad. Sci., 80: 3059–3063 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    J. M. Lopez, E. Arteaga, J. A. Rodriguez, and H. Croxatto, Increased excretion of kallikrein during dexamethasone administration in normal man on low and normal salt intake, Clin. Sci., 65: 487–490 (1983).Google Scholar
  20. 20.
    J. Chao and H. S. Margolius, Differential effects of testosterone, thy roxine, and Cortisol on rat submandibular gland versus renal kallikrein, Endocrinology, 113: 2221–2225 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    H. S. Ormsbee and C. F. Ryan, Production of hypertension with desoxycorticosterone acetate-impregnated silicone rubber implants, J. Pharmaceut. Sci., 62: 255 (1973).CrossRefGoogle Scholar
  22. 22.
    P. L. Altman and D. S. Dittmer, Blood and other body fluids. Biological Handbooks, Bethesda, MD. Federation of American Societies for Experimental Biology.Google Scholar
  23. 23.
    O. H. Lowry, N. J. Rosenbrough, A. C. Farr, and R. J. Randall, Protein measurement with the Folin reagent, J. Biol. Chem., 193: 265–275 (1951).PubMedGoogle Scholar
  24. 24.
    K. Mann, J. Richter, and H. J. Karl, The influence of cholecystokinin and gastrin on human parotid kallikrein secretion. International Conference on Kallikreins - Kinisn - Kininogens - Kininases, Abstract E.P.L., Munich (1981).Google Scholar
  25. 25.
    J. A. Mangos and N. R. McSherry, Micropuncture study of sodium and potassium excretion in rat parotid saliva: Role of aldosterone, Proc. Soc. Exptl. Biol. Med., 132: 797–801 (1969).Google Scholar
  26. 26.
    E. G. Erdos, L. L. Tague, and I. Miwa, Kallikrein in granules of the submaxillary gland, Biochem. Pharmac., 17: 667–674 (1968)Google Scholar
  27. 27.
    J. A. V. Simson, S. S. Spicer, J. Chao, L. Grim, and H. S. Margolius, Kallikrein localization in rodent salivary glands and kidney with the immunoglobulin-enzyme bridge technique, J. Histochem. Cytochem., 27: 1567–1576 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    T. B. Orstavik, P. Brandtzaeg, K. Nustad, and K. M. Halvorsen, Cellular localization of kallikreins in rat submandibular and sublingual glands, Acta. Histochem., 54: 183–192 (1975).Google Scholar
  29. 29.
    S. Tanaka, J. Chao, and H. S. Margolius, A direct radioimmunoassay for immunoreactive glandular kallikrein in rat serum, Fed. Proc., 41: 1473 (Abstract) (1982).Google Scholar
  30. 30.
    M. G. Nicholls, W. Kiowski, A. J. Zweifler, S. Julius, M. A. Schork, and J. Greenhouse, Plasma norepinephrine variations with dietary sodium intake, Hypertension, 2: 29–32 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    L. J. Kaufman and R. R. Vollmer, Low sodium diet augments plasma and tissue catecholamine levels in pithed rats, Clin. Exp.-Theory and Practice, A6: 1543–1558 (1984).Google Scholar
  32. 32.
    W. Selye, R. Veilleux, and M. Cantin, Excessive stimulation of salivary gland growth by isoproterenol, Science, 133: 44 (1961).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Baserga, T. Sasaki, and J. P. Whitlock, Isoproterenol stimulated DNA synthesis in rat salivary glands, in: “Biochemistry of Cell Division,” R. Baserga, ed., Thomas (1969).Google Scholar
  34. 34.
    T. C. Muir and D. Templeton, The role of 351-adenosine monophosphate (cyclic AMP) in the ability of sympathetic nerve stimulation to enhance growth and secretion in rat salivary glands in vivo, J. Physiol., 259: 47–61 (1976).PubMedGoogle Scholar
  35. 35.
    R. Garcia, G. Thibault, J. Gutkowska, and J. Genest, Release of tonin and kallikrein by perfused rat submaxillary gland, Am. J. Physiol., 244: R228–R234 (1983).PubMedGoogle Scholar
  36. 36.
    D. H. Miller, J. Chao, and H. S. Margolius, Tissue kallikrein synthesis and its modification by testosterone or low dietary sodium, Biochem. JL, 218: 37–43 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Shinji Seto
    • 1
  • Sara F. Rabito
    • 1
  • Subir R. Maitra
    • 1
  • Jonathan N. Wu
    • 1
  • Oscar A. Carretero
    • 1
  1. 1.Hypertension Research DivisionHenry Ford HospitalDetroitUSA

Personalised recommendations