Advertisement

Kinins IV pp 241-246 | Cite as

Tissue Kallikreins and Related Enzymes: Characterization by Model Oligopeptides

  • Eline S. Prado
  • Luis Juliano
  • Mariana S. Araújo-Viel
  • Maria A. Juliano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)

Summary

The first purpose of this work was to obtain direct evidence that tissue kallikreins cleave arginyl bonds when the leaving group is Arg-Val, and on the contrary, do not split them when it is Arg-Pro; the second aim was to ascertain whether this specificity could be used as a criterion, for characterizing tissue kallikreins.

Two tetrapeptides A) Ac-Phe-Arg-Arg-Val-NH2 and B) Ac-Phe-Arg-Arg-Pro-NH2 were synthesized by the solid phase method and purified to homogeneity. They were used as substrates for homogeneous preparations of tissue and plasma kallikreins, as well as for some related serine proteases. Products identification and kinetic analyse were made by HPLC.

The hindering effect of the P2 Pro residue in the hydrolysis by tissue kallikreins was unequivocally demonstrated. Results showed also that enzymes which cleave the Arg-Arg bond in peptide A but do not hydrolyze peptide B, may be classified as tissue kallikreins.

Keywords

High Performance Liquid Chromatography High Performance Liquid Chromatography Proline Residue Tissue Kallikrein Solid Phase Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Prado, L. Prado de Carvalho, M. S. Aradjo-Viel, N. Ling, and J. Rossier, A Met-enkephalin-containing-peptide, BAM 22P, as a novel substrate for glandular kallikreins, Biochem. Biophys. Res. Commun. 112: 366–371 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    I. Schechter and A. Berger, On the size of the active site in proteases Is Papain: specific inhibitor of papain, Biochem. Biophys. Res. Commun., 27: 157–162 (1967).CrossRefGoogle Scholar
  3. 3.
    F. Fiedler, Enzymology of porcine tissue kallikreins, Adv. Exp. Med. Biol., 156A: 261–274 (1983).Google Scholar
  4. 4.
    Z. Chen and Vi. Bode, Refined 2.5 A x-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor, J. Mol. Biol., 164: 283–311 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    E. P. Giusti, C. A. M. Sampaio, and E. S. Prado, Purification of horse urinary kallikrein by affinity chromatography, Agents & Actions, 8: 164 (1978).CrossRefGoogle Scholar
  6. 6.
    R. Geiger, U. Stuckstedte, and H. Fritz, Isolation and characterization of human urinary kallikrein, Hoppe-Seyler1s Z. Physiol. Chem., 361: 1003–1016 (1980).CrossRefGoogle Scholar
  7. 7.
    M. L. Oliva, D. Grisolia, M. U. Sampaio, and C. A. M. Sampaio, Properties of highly purified human plasma kallikrein, Agents & Actions, 9: 52–57 (1982).Google Scholar
  8. 8.
    M. Kouyoumdjian, D. R. Borges, J. A. Guimaraes, C. A. M. Sampaio, and J. L., Prado, Manuscript in preparation.Google Scholar
  9. 9.
    J. Chao and H. S. Margolius, Isoenzymes of rat urinary kallikrein, Biochem. Pharmacol., 28: 2071–2079 (1979).Google Scholar
  10. 10.
    R. C. R. Stella, To be published.Google Scholar
  11. 11.
    C. A. M. Sampaio, M. U. Sampaio, and E. S. Prado, Active-site titration of horse urinary kallikrein, Hoppe-Seyler1s Z. Physiol. Chem., 365: 297–302 (1984).CrossRefGoogle Scholar
  12. 12.
    C. A. M. Sampaio, S. C. Wong, and E. Shaw, Human plasma kallikrein. Purification and preliminary characterization, Arch. Biochem. Biophys., 165: 133–139 (1974).CrossRefGoogle Scholar
  13. 13.
    G. N. Wilkinson, Statistical estimations in enzyme kinetics, Biochim. JN, 80: 324–332 (1961).Google Scholar
  14. 14.
    F. Fiedler, Substrate specificity of porcine pancreatic kallikrein, Adv. Exp. Med. Biol., 120A: 261–271 (1979).Google Scholar
  15. 15.
    P. R. Levison and G. Tomalin, The kinetics of hydrolysis of some ex tended Naminoacyl-L-arginine methyl esters by human plasma kallikrein, Biochem. J., 203: 149–153 (1982).PubMedGoogle Scholar
  16. 16.
    E. S. Prado, C. A. M. Sampaio, M. S. Araujo-Viel, and R. C. R. Stella, Characterization of horse urinary kallikrein, Agents & Actions, 9: 162–166 (1982).Google Scholar
  17. 17.
    E. S. Prado, R. C. R. Stella, M. J. Roncada, and J. L. Prado, Action of horse urinary kallikrein on arginine and lysine-peptides, in: “International Symposium on Vaso-Active Polypeptides; Bradykinin and Related Kinins,” M. Rocha e Silva and H. A. Rothschild, eds., EDART, Sao Paulo (1967).Google Scholar
  18. 18.
    E. S. Prado, M. E. Webster, and J. L. Prado, Kallidin (lysyl-bradykinin) the kinin formed from horse plasma by horse urinary kallikrein, Biochem. Pharmacol., 20: 2009–2015 (1971).Google Scholar
  19. 19.
    J. V. Pierce and M. E. Webster, Human plasma kallikdins. Isolation and chemical studies, Biochem. Biophys. Res. Commun., 5: 353–357 (1961).CrossRefGoogle Scholar
  20. 20.
    F. Alhenc-Gelas, J. Marchetti, J. Allegrini, P. Corvol, and J. Menard, Measurement of urinary kallikrein activity. Species differences in kinin production, Biochem. Biophys. Acta., 677: 477–488 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Eline S. Prado
    • 1
  • Luis Juliano
    • 2
  • Mariana S. Araújo-Viel
    • 1
  • Maria A. Juliano
  1. 1.Department of BiochemistryEscola Paulista de MedicinaSão PauloBrasil
  2. 2.Department of BiophysicsEscola Paulista de MedicinaSão PauloBrasil

Personalised recommendations