Kinins IV pp 203-210 | Cite as

Transporting Epithelia as Targets for Kinin Effects

  • A. W. Cuthbert
  • L. J. MacVinish
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)


One approach which can be used to discover the function(s) of the kallikrein-kinin system is to make the assumption that tissue kallikrein can generate lysyl bradykinin (LBK, kallidin) in tissues, where it then acts as local hormone. If this be true then it follows that novel effects of kinin may be discovered in tissues where kallikrein is especially localized. Consideration of these effects may then allow some conclusions to be drawn about the roles of the kallikrein-kinin system in either physiological or pathological states.


Short Circuit Current Chloride Secretion Tissue Kallikrein Open Circuit Condition Toad Urinary Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Geller, H. S. Margolius, J. J. Pisano, and H. R. Keiser, Effects of mineralocorticoids, altered sodium intake and adrenalectomy on urinary kallikrein in rats, Circulation Res., 31: 857–861 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    H. S. Margolius, D. Horwitz, J. J. Pisano, and H. R. Keiser, Urinary kallikrein excretion in hypertensive man. Relationships to sodium uptake and sodium-retaining steroids, Circulation Res., 35: 820–825 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    G. G. Orce, G. A. Castillo, and H. S. Margolius, Inhibition of short circuit current in toad urinary bladder by inhibitors of glandular kallikrein, Am. J. Physiol., 239: F459–F465 (1980).PubMedGoogle Scholar
  4. 4.
    A. Zimmerman, R. Geiger, and H. Kortmann, Similarity between a kinino- genase (kallikrein) from human large intestine and human urinary kallikrein, Hoppe-Seyler’s Z. Physiol. Chem., 360: 1767–1773 (1979).CrossRefGoogle Scholar
  5. 5.
    A. W. Cuthbert, and H. S. Margolius, Kinin effects on electrolyte transport in rat colon, J. Physiol., 319: 45P (1981).Google Scholar
  6. 6.
    A. W. Cuthbert and H. S. Margolius, Kinins stimulate net chloride secretion by rat colon, Brit. J. Pharmacol., 75: 587–598 (1982).Google Scholar
  7. 7.
    A. W. Cuthbert, P. V. Halushka, H. S. Margolius, and J. A. Spayne, Role of calcium ions in kinin-induced chloride secretion, Brit. J. Pharmacol., 82: 587–595 (1984).Google Scholar
  8. 8.
    A. W. Cuthbert, P. V. Halushka, H. S. Margolius, and J. A. Spayne, Mediators of the secretory response to kinins, Brit. J. Pharmacol., 82: 597–607 (1984).Google Scholar
  9. 9.
    A. W. Cuthbert, P. V. Halushka, D. Kessel, H. S. Margolius, and W. C. Wise, Kinin effects on chloride secretion do not require eicosanoid synthesis, Brit. J. Pharmacol., 83: 549–554 (1984).Google Scholar
  10. 10.
    D. Manning, S. H. Snyder, J. F. Kachur, R. J. Miller, and M. Field, Bradykinin receptor-mediated chloride secretion in intestinal function, Nature, 299: 256–259 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Hardcastle, P. T. Hardcastle, R. J. Flower, and P. A. Sandford, The effect of bradykinin on the electrical activity of rat jejunum, Experientia, 34: 617–618 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    H. H. Ussing and K. Zerahn, Active-transport of sodium as the source of electric current in the short-circuited isolated frog skin, Acta Physiol. Scand., 23: 110–127 (1951).Google Scholar
  13. 13.
    R. A. Frizzell, M. Field, and S. G. Schultz, Sodium-coupled chloride transport by epithelial tissue, Am. J. Physiol., 236: F1–F8 (1979).PubMedGoogle Scholar
  14. 14.
    M. Donowitz, in the control of active intestinal Na and CI transport: Involvement in neurohumoral action, Am. J. Physiol., 245: G165–G177 (1983).PubMedGoogle Scholar
  15. 15.
    A. W. Cuthbert, Calcium dependent chloride secretion in rat colon epithelium, J. Physiol., In press (1984).Google Scholar
  16. 16.
    J. J. Pisano, Observations on the kallikrein-kinin system in the kidney, in: “Kinins III. Adv. Exp. Med. & Biol.,” 156B:929–938 (1983).Google Scholar
  17. 17.
    T. B. Orstavik, K. Nustad, P. Brandtzaeg, and J. V. Pierce, Cellular origin of urinary kallikreins, J. Histochem. Cytochem., 24: 1037–1039 (1976).CrossRefGoogle Scholar
  18. 18.
    D. Proud, M. Perkins, J. V. Pierce, K. N. Yates, P. F. Highet, P. L. Herring, M. M. Mark, R. Bahn, F. Carone, and J. J. Pisano, Characterization and localization of human renal kininogen, J. Biol. Chem., 256: 10634–10639 (1981).PubMedGoogle Scholar
  19. 19.
    D. Proud, M. A. Kepper, and J. J. Pisano, Distribution of immunoreactive kallikrein along the rat nephron, Am. J. Physiol., 244: F510–F515 (1983).PubMedGoogle Scholar
  20. 20.
    K. Tomita and J. J. Pisano, Binding of bradykinin in isolated nephron segments of the rabbit, Am. J. Physiol., 246: F732–F737 (1984).PubMedGoogle Scholar
  21. 21.
    K. Tomita, H. Endou, and F. Sakai, Localization of kallikrein-like activity along a single nephron in rabbits, Pflugers. Arch., 389: 91–95 (1981).Google Scholar
  22. 22.
    J. S. Handler, F. M. Perkins, and J. P. Johnson, Studies of renal cell function using cell culture techniques, Am. J. Physiol., 238: F1–F9 (1980).PubMedGoogle Scholar
  23. 23.
    F. M. Perkins and J. S. Handler, Transport properties of toad kidney epithelia in culture, Am. J. Physiol., 241: C154–C159 (1981).PubMedGoogle Scholar
  24. 24.
    F. C. Grenier, T. E. Rollins, and W. L. Smith, Kinin-induced prosta glandin synthesis by renal papillary collecting tubule cells in culture, Am. J. Physiol., 241: F94–F104 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. W. Cuthbert
    • 1
  • L. J. MacVinish
    • 1
  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeUSA

Personalised recommendations