Advertisement

Kinins IV pp 195-202 | Cite as

Processing of Apolipoprotein B-100 of Human Plasma Low Density Lipoproteins by Tissue and Plasma Kallikreins

  • Alan D. Cardin
  • Richard L. Jackson
  • Virginia H Donaldson
  • Julie Chao
  • Harry S. Margolius
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)

Summary

Human plasma low density lipoporteins (LDL) are the major carriers of cholesterol and cholesteryl esters in the circulation. Their increased levels correlate positively with increased risk of coronary artery disease. LDL contain a single major apolipoprotein of apparent molecualr weight (Mr) = 550,000, designated apolipoprotein B-100 (apoB-100), and ins ome LDL preparations, minor components termed apoB-74 (410,000) and apoB-26 (145,000). The structural relationship of the apoB-74 and -26 proteins to the apoB-100 has remained obscure and their roles in cholesterol metabolism are unknown. In the present study, we show that the addition of kaolin to plasma anticoagulated with EDTA induces the proteolytic cleavage of apoB-100. As a result, two apoB peptides are produced with Mr indistinguishable from plasma apoB-74 and -26. The specific cleavage of apoB-100 was mimicked in vitro by purified human plasma and tissue kallikreins. In contrast, thrombin, factor Xa, plasmin, trypsin, and chymotrypsin did not produce these peptides when incubated with LDL. The findings of the study suggest that apoB-74 and -26 are proteolytic fragments of apoB-100 and that the endogenous protease has a kallikrein-like specificity for DLD-apoB-100. The role of plasma and tissue kallikreins in cholesterol metabolism remains to be determined.

Keywords

Nephrotic Syndrome Apparent Molecular Weight Tissue Kallikrein Plasma Kallikrein Goat Antiserum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Goldstein and M. S. Brown, The low-density lipoprotein pathway and its relation to atherosclerosis, Ann. Rev. Biochem., 46:897– 930 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    J. P. Kane, D. A. Hardman, and H. E. Paulus, Heterogeneity of apolipoprotein B: Isolation of a new species from human chylomicrons, Proc. Natl. Acad. Sci. USA, 77: 2465–2469 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    M. J. Malloy, J. P. Kane, D. A. Hardman, R. L. Hamilton, and K. B. Dalai, Normotriglyceridemic abetalipoproteinemia: Absence of the B-100 apolipoprotein, J. Clin. Invest., 67: 1441–1450 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Shimamoto, J. Chao, and H. S. Margolius, The radioimmunoassay of human urinary kallikrein and comparisons with kallikrein activity measurements, J. Clin. Endocrinol. Metab., 51: 840–848 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Chao, S. Tanaka, and H. S. Margolius, Inhibitory effects of sodium and other monovalent cations on purified versus membrane-bound kallikrein, J. Biol. Chem., 258: 6461–6465 (1983).PubMedGoogle Scholar
  6. 6.
    H. Nagase and A. J. Barrett, Human plasma kallikrein: A rapid purification method with high yield, Biochem. J., 193: 187–192 (1981).PubMedGoogle Scholar
  7. 7.
    V. H. Donaldson, R. A. Harrison, F. A. Rosen, D. H. Bing, G. Kindness, J. Canar, C. J. Wagner, and S. Awad, Variability in purified dysfunctional C1-inhibitor protein frompatients with hereditary angioneurotic edema, J. Clin. Invest., 75: 1–9 (1985).CrossRefGoogle Scholar
  8. 8.
    H. Saito, O. D. Ratnoff, and V. H. Donaldson, Defective activation of clotting, fibrinolytic, and permeability-enhancing systems in human Fletcher trait plasma, Circ. Res., 34: 641–651 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    A. D. Cardin, K. R. Witt, C. L. Barnhart, and R. L. Jackson, Sulfhydryl chemistry and solubility properties of humanplasma apolipoprotein B, Biochemistry, 21: 4503–4511 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    A. D. Cardin, K. R. Witt, J. Chao, H. S. Margolius, V. H. Donaldson, and R. L. Jackson, Degradation of apolipoprotein B-100 of human plasma low density lipoproteins by tissue and plasma kallikreins, J. Biol. Chem., 259: 8522–8528 (1984).PubMedGoogle Scholar
  11. 11.
    H. Towbin, T. Staehelin, and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applciations, Proc. Natl. Acad. Sci. USA, 76: 4350–4354 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    J. M. Gershoni and G. E. Palade, Protein blotting: Principles and applciations, Anal. Biochem., 131: 1–15 (1983).Google Scholar
  13. 13.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193: 265–275 (1951).PubMedGoogle Scholar
  14. 14.
    K. Shimamoto, R. K. Mayfield, H. S. Margolius, J. Chao, W. Stroud, and A. P. Kaplan, Immunoreactive tissue kallikrein in human serum, J. Lab. Clin. Med., 103: 731–738 (1984).PubMedGoogle Scholar
  15. 15.
    T. S. Paskhina, L. R. Polyantseva, A. V. Krinskaya, T. P. Egorova, V. Ph. Nartikova, I. M. Karmansky, and R. I. Yakubovskaya, Components of KKKK system in plasma and edematous fluids of patients with nephrotic syndrome (NS): Compensatory and pathogenetic role of kinins in nephrotic syndrome, Adv. Exp. Med. Biol., 156B: 1119–1125 (1983).PubMedGoogle Scholar
  16. 16.
    R. Ross, The arterial wall and atherosclerosis, Ann. Rev. Med., 30: 1 – 15 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Nolly and M. C. Lama, Vascular kallikrein: A kallikrein-like enzyme present in vascular tissue of the rat, Clin. Sci. (Lond.), 63: 249s–251s (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alan D. Cardin
    • 1
  • Richard L. Jackson
    • 2
  • Virginia H Donaldson
    • 3
  • Julie Chao
    • 4
    • 5
  • Harry S. Margolius
    • 4
    • 5
  1. 1.Division of Lipoprotein Research, Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.The Merrell Dow Research InstituteMerrell Dow Pharmaceuticals, Inc.CincinnatiUSA
  3. 3.Children’s Hospital Research FoundationCincinnatiUSA
  4. 4.Department of PharmacologyMedical Unviersity of South CarolinaCharlestonUSA
  5. 5.Department of MedicineMedical Unviersity of South CarolinaCharlestonUSA

Personalised recommendations