Kinins IV pp 189-194 | Cite as

Characterization of Rat Kallikrein-Like Multigene Family and its Expression in the Submandibular Gland

  • Lee Chao
  • William Gerald
  • Julie Chao
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)


A cDNA clone encoding rat tissue kallikrein was isolated from a submandibular cDNA library. The kallikrein cDNA clone was used as a probe to analyze the complexity of the kallikrein-like gene family and its expression. The results indicate that rat kallikrein-like genes identified with this probe belong to a very large and highly homologous multigene family. A number of these genes, perhaps as many as a dozen or so, are expressed in the submandibular gland.


Nerve Growth Factor cDNA Library cDNA Clone Submandibular Gland Genomic Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Mason, B. A. Evans, D. R. Cox, J. Shine, and R. I. Richards, Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides, Nature, 303: 300–307 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    E. A. Berger and E. M. Shooter, Evidence for pro-B-nerve growth factor, a biosynthetic precursor to B-nerve growth factor, Proc. Natl. Acad. Sci. USA, 76: 6294–6298 (1979).CrossRefGoogle Scholar
  3. 3.
    P.,Frey, R. Forand, T. Magiag,and E. M. Shooter, The biosynthetic precursor of epidermal growth factor and the mechanism of its processing, Proc. Natl. Acad. Sci. USA, 76: 6294–6298 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Shine, A. J. Mason, B. A. Evans, and R. I. Richards, The kallikreinmultigene, Quant. Biol., 48: 419–426 (1983).CrossRefGoogle Scholar
  5. 5.
    J. M. Chirgwin,A. E. Przybyla, R. J. McDonald, and W. J. Rutter, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry, 18: 5294–5299 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Vieira and J. Messing, The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers, Gene, 19: 259–268 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Helfman, J. Feramisco, J. Fiddes, G. Thomas, and S. Hughes, Identification of clones that encode chicken tropomysin by direct immunological screening of cDNA expression library, Proc. Natl. Acad. Sci. USA, 80: 31–35 (1983).Google Scholar
  8. 8.
    T. Maniatis and E. Fritsch, in: “Molecular Cloning, A Laboratory Manual”, Cold Spring Harbor Laboratory, pp. 270–294, 382–389, 455–467 (1982).Google Scholar
  9. 9.
    F. R. Blattner, B. G. Williams, A. E. Blechl, K. D. Thompson, H. E. Faber, L. A. Furlong, D. J. Grunwald, D. O. Kiefer, D. D. Moore, J. W. Schumm, E. L. Sheldon, and O. Smithies, Charon phages: Safer derivatives of bacteriophage lambda for DNA cloning, Science, 196: 161 169 (1977).Google Scholar
  10. 10.
    W. D. Benton and R. Davis, Screening gt recombinant clones by hybridization to single plaques in situ, Science, 196: 180–182 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Thomas, Hybridization of denatured RNA transferred or dotted to nitro cellulose paper, in: “Methods in Enzymology, Vol. 100,” R. Wu, L. Grossman, and K. Moldave, eds., Academic Press, pp. 255–266 (1983).Google Scholar
  12. 12.
    F. Sanger, S. Nicklen, and A. Coulson, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. USA, 74: 5463–5467 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Messing, New M13 vectors for cloning, in: “Methods in Enzymology, Vol. 101,” R. Wu, L. Grossman, and K. Moldave, eds., Academic Press, pp. 325–331 (1983).Google Scholar
  14. 14.
    G. Swift, J. Dagorn, P. Ashley, S. Cummings, and R. J. McDonald, Rat pancreatic kallikrein mRNA: Nucleotide sequence and amino acid sequence of the encoded preoproenzyme, Proc. Ntl. aCad. Sci. USA, 79: 7263 – 7267 (1982)CrossRefGoogle Scholar
  15. 15.
    A. Efstratiadis, J. W. Posakony, C. O’Connell, R. A. Sprtiz, J. K. DeRiel, B. G. Forget, S. M. Weisman, J. L. Slightom, A. E. Blechl, F. E. Baralle, C. C. Shoulders, and N. J. Proudfoot, The structure and evolution of the human B-globin gene family, Cell, 21: 653 – 668 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    W. H. Li, T. Gojobori, and M. Nei, Pseudogenes as a paradigm of neutral evolution, Nature, 292: 237–239 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Lee Chao
    • 1
    • 2
  • William Gerald
    • 1
    • 2
  • Julie Chao
    • 1
    • 2
  1. 1.Department of BiochemistryMedical University of South CarolinaCharlestonUSA
  2. 2.Department of PharmacologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations