Kinins IV pp 119-125 | Cite as

Urinary Kininogen: A Possible Regulator of Kinin Formation in Normal Individuals and Subjects with Essential Hypertension, End-Stage Renal and Liver Disease

  • Marc S. Weinberg
  • W. M. Trebbin
  • Richard J. Solomon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 198A)


Most previous studies have not significantly correlated urinary kallikrein to urinary kinins. We investigated whether urinary kininogen might influence kinin formation within the urine. On an ad-lib diet the 24 hour excretion of total and intact kininogen, kinins and kallikrein was determined in 24 control subjects, 20 untreated essential hypertensives, 12 vith end-stage renal disease and 8 subjects with liver disease. Kallikrein and kinins were measured by a direct radioimmunoassay. Total kininogen was determined from the sum of preformed kinins and kinins generated after trypsin (intact kininogen), Cross reactivity between purified human low molecular weight kininogen and bradykinin antiserum was 3%. Total and intact kininogen were significantly correlated with kinins in controls, essential hypertension and liver disease. In essential hypertension, end-stage renal and liver diseases kinins were significantly decreased. This was associated with a reduction in kininogen but not kallikrein in essential hypertension and liver disease, and a reduction in kallikrein but not kininogen in end-stage renal disease. Thus, renal kinin generation in various states may be affected by either or both kininogen and kallikrein.


Liver Disease Essential Hypertension Urinary Sodium Endogenous Kinin Urinary Kallikrein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. Levinsky, The renal kallikrein-kinin system, Circ. Res., 44: 441–451, (1979).Google Scholar
  2. 2.
    O. A. Carretero and A. G. Scicli, The renal kallikrein-kinin system, Am. J. Physiol., 238: F247–255, (1980).PubMedGoogle Scholar
  3. 3.
    W. Lieberthal, N. B. Oza, D. B. Bernard, and N. G. Levinsky, The effect of cations on the activity of human urinary kallikrein, J. Biol. Chem., 257: 10827–10830, (1982).PubMedGoogle Scholar
  4. 4.
    J. J. Pisano, J. Corthorn, K. Yates, and J. V. Pierce: The kallikrein-kinin system in the kidney, Controv. Nephrol., 12: 116–125, (1978).Google Scholar
  5. 5.
    J. L. Hulthen, J. F. Dymling, and B. Hokfeit, Kinins in relation to kallikrein activity, kininogen, electrolytes, aldosterone and catecholamines in urine from normal individuals, Acta. Physiol. Scand., 110: 307–314, (1980).CrossRefGoogle Scholar
  6. 6.
    D. Proud, M. Perkins, J. V. Pierce, K. N. Yates, P. F. Highet, P. L. Herring, M. Mangkornkanok/Mark, R. Bahu, F. Carone, and J. J. Pisano, Characterization and localization of human renal kininogen, J. Biol. Chem., 256: 10634–10639, (1981).Google Scholar
  7. 7.
    M. S. Weinberg, C. A. St. Martin, P. Azar, M. Taylor, W. M. Trebbin, and R. J. Solomon, Urokininogen: A possible regulator of the kallikrein-kinin system, Clin. Res., 32: 459A, (1984).Google Scholar
  8. 8.
    W. Muller-Esterl, I. Juso, and H. Fritz, Quantitation and differentiation of human kininogens by enzyme-linked immunosorbent assays (ELISA), Fresenius Z. Anal. Chem., 317: 733–734, (1984).CrossRefGoogle Scholar
  9. 9.
    V. Hial, H. R. Keiser, and J. J. Pisano, Origin and content of methionyl-lysyl-bradykinin, lysyl-bradykinin and bradykinin in human urine, Biochem. Pharmacol., 25: 2499–2503, (1976).Google Scholar
  10. 10.
    M. S. Weinberg, N. B. Oza, and N. G. Levinsky, Components of the kallikrein-kinin system in rat urine, Biochem. Pharmacol., 33: 1779–1782, (1984).Google Scholar
  11. 11.
    N. B. Oza, W. Lieberthal, D. B. Bernard, and N. G. Levinsky, Anti body that recognizes total human urinary kallikrein, Radioimmunological determination of inactive kallikrein, J. Immunol., 126: 2361–2364, (1983).Google Scholar
  12. 12.
    W. Lieberthal, L. Arbeit, N. B. Oza, D. B. Bernard, and N. G. Levinsky, Reduced ratio of active-to-total urinary kallikrein in essential hypertension, Hypertension, 5: 603–609, (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    B. E. Huitema, The analysis of covariance and alternatives, John Wiley & Sons, New York, NY, pp. 238–240.Google Scholar
  14. 14.
    F. N. Kerlinger and E. J. Pedhazer, Multiple regression in behavioral research, Holt, Rinehart & Winston, Inc., New York, NY, pp. 83.Google Scholar
  15. 15.
    W, Muller-Esterl, M. Vohle-Timmermann, B. Boos, and B. Dittman, Purification and properties of human low molecular weight kininogen, Biochim. Biophys. Acta., 706: 145–152, (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Maier, K. F. Austen, and J. Spragg, Kinetic analysis of the interaction of human issue kallikrein with single chain human high and low molecular weight kininogens, Proc. Natl. Acad. Sci., 80: 3928–3932, (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    J. V. Pierce and J. A. Guimaraes, Further characterization of highly purified human plasma kininogens, in: The Chemistry and Biology of the kallikrein-Kinin System in Health and Disease by J. J. Pisano and K. F. Austen, eds., U. S. Government Printing Office, Washington, D. C., pp. 121–128, (1977).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Marc S. Weinberg
    • 1
    • 2
  • W. M. Trebbin
    • 1
    • 2
  • Richard J. Solomon
    • 1
    • 2
  1. 1.Department of MedicineRoger Williams General HospitalProvidenceUSA
  2. 2.Providence Veterans Administration Medical CenterBrown University Division of Biology and MedicineProvidenceUSA

Personalised recommendations