Properties of Mutable Alleles Recovered from Mutator Stocks of Zea Mays L.

  • Virginia Walbot
  • Catherine P. Briggs
  • Vicki Chandler
Part of the Stadler Genetics Symposia Series book series (SGSS)


The study of transposable elements and the highly mutable alleles they create allows recognition of the fluid nature of both prokaryotic and eukaryotic genomes. Mutations at particular alleles have been instrumental in dissecting the spatial and temporal patterns of gene expression in maize (Zea mays L.) and Drosophila. And with the advent of molecular cloning, the mutable alleles containing a particular insertion element can be isolated by virtue of the transposon “tag” they contain. Recently we have begun studying the genetic and molecular properties of mutable alleles derived from maize lines containing Mutator activity. In this paper we review the properties of unstable alleles of maize and the genetic properties of Mutator lines of maize. A new transposable element family has been discovered and isolated from an unstable allele recovered from a Mutator line (Barker, et al., 1984). The molecular properties of this element called Mu-l will be reviewed.


Transposable Element Mutable Allele Mutator Line Insertion Element Anthocyanin Biosynthetic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, R. F., Thompson, D. V., Talbot, D. R., Swanson, J., and Bennetzen, J. L., 1984, Nucleotide sequence of the maize transposable element Mul, Nucleic Acid Res., 12:5955–5967.PubMedCrossRefGoogle Scholar
  2. Bennetzen, J. L., Swanson, J., Taylor, W. C., and Freeling, M., 1984, DNA insertion in the first intron of maize Adhl affects message levels: Cloning of progenitor and mutant Adhl alleles, Proc. Natl. Acad. Sci. USA, 81:4125–4123.PubMedCrossRefGoogle Scholar
  3. Burr, B., and Burr, F., 1981, Transposable elements and genetic instabilities in crop plants, in: “Stadler Genet. Symp.,” vol. 13, G. Redei, ed., University of Missouri, Ag. Exp. Stn., pp. 115–128.Google Scholar
  4. Coe, E. H. Jr., 1973, The aleurone tissue of maize as a genetic tool, in: “Maize Breeding and Genetics,” O. B. Waiden, ed., Wiley-Interscience, pp. 447–459.Google Scholar
  5. Coe, E. H. Jr., and Neuffer, M. G., 1977, The genetics of corn, in: “Corn and Corn Improvement,” G. F. Sprague, ed., Amer. Soc. of Agronomy, Inc., Madison, pp. 111–223.Google Scholar
  6. Coe, E. H. Jr., and Neuffer, M. G., 1973, Embryo cells and their destinies in the corn plant, in: “The Clonal Basis of Development,” S. Subtelny and I. M. Sussex, eds., Academic Press, New York, pp. 113–129.Google Scholar
  7. Döring, H.-P., and Starlinger, P., 1984, Barbara McClintock’s controlling elements: Now at the DNA level, Cell, 39:253–259.PubMedCrossRefGoogle Scholar
  8. Emerson, R. A., 1914, The inheritance of a recurring somatic variation in variegated ears of maize, Am. Nat., 43:37–115.Google Scholar
  9. Emmons, S. W., Yesner, L., Ruan, K. and Katzenberg, D., 1983, Evidence for a transposon in Caenorhabditis elegans, Cell, 32:55–65.PubMedCrossRefGoogle Scholar
  10. Federoff, N. V., 1983, Controlling elements in maize, in: “Mobile Genetic Elements,” J. Shapiro, ed., Academic Press, New York, pp. 1–63.Google Scholar
  11. Federoff, N. V., Furtek, D.B. and Nelson, O. E. Jr., 1984, Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator (Ac), Proc. Natl. Acad. Sci. USA, 31:3325–3329.Google Scholar
  12. Freeling, M., 1934, Plant transposable elements, Annu. Rev. Plant Physiol., 35:277–298.CrossRefGoogle Scholar
  13. Johri, M. M., and Coe, E. H. Jr., 1983, Clonal analysis of corn plant development. I. The development of the tassel and the ear shoot, Develop. Biol. 97:154–172.PubMedCrossRefGoogle Scholar
  14. McClintock, B., 1956, Intranuclear systems controlling gene action and mutation, Brookhaven Symp. Biol., 8:58–74.PubMedGoogle Scholar
  15. McClintock, B., 1973, Mechanisms that rapidly reorganize the genome, in: “Stadler Genet. Symp.,” vol. 10, G. Redei, ed., University of Missouri, Ag. Exp. Stn., pp. 25–47.Google Scholar
  16. Mottinger, J., Johns, M. A., and Freeling, M., 1984, Mutations of the Adhl gene in maize following infection with barley stripe mosaic virus, Mol. gen. Gen., 195:357–369.Google Scholar
  17. Rhoades, M. M., 1938, Effect of Dt on the mutability of the al allele in maize, Genetics, 23:377–397.PubMedGoogle Scholar
  18. Robertson, D. S., 1978, Characterization of a mutator system in maize, Mutat. Res., 51:21–28.CrossRefGoogle Scholar
  19. Robertson, D. S., 1980, The timing of Mu activity in maize, Genetics, 94:969–978.PubMedGoogle Scholar
  20. Robertson, D.S., 1983, A possible dose-dependent inactivation of mutator (Mu) in maize, Mol. Gen. Genet., 191:86–90.CrossRefGoogle Scholar
  21. Robertson, D. S. and Mascia, P. N., 1981, Tests of 4 controlling-element systems of maize for mutator activity and their interaction with Mu mutator, Mutat. Res., 84:283–239.CrossRefGoogle Scholar
  22. Roeder, G. S., and G. R. Fink, 1933, Transposable elements in yeast, in:, “Mobile Genetics Elements,” J. Shapiro, ed., Academic Press, New York, pp. 300–328.Google Scholar
  23. Strommer, J. N., Hake, S., Bennetzen, J., Taylor, W. C., and Freeling, M., 1932, Regulatory mutants of the maize Adhl gene caused by DNA insertions, Nature, 300:542–544.CrossRefGoogle Scholar
  24. Sutton, W. D., Gerlach, W. L., Schwartz, D., and Peacock, W. J., 1934, Molecular analysis of Ds controlling element mutations at the Adhl locus of maize, Science, 223:1265–1268.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Virginia Walbot
    • 1
  • Catherine P. Briggs
    • 1
  • Vicki Chandler
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations