Mutation, Apical Meristems and Developmental Selection in Plants

  • Edward J. KlekowskiJr.
  • Hans Mohr
  • Nina Kazarinova-Fukshansky
Part of the Stadler Genetics Symposia Series book series (SGSS)


Since in plants Weismann’s doctrine of the separation of soma and germ is invalid, somatic mutations may occur in cell lines which in turn give rise to meiocytes. Although some mutations are adaptive, the majority of mutations are disadvantageous and ultimately reduce the fitness of a ramet (or genet). Many anatomical and developmental characteristics may reduce the mutation frequency within ramets. Apical meristems may influence mutation frequency by either reducing the mutation rate or enhancing diplontic selection. The former is possible in meristems with permanent apical initials (structured meristems) through nonrandom DNA strand segregation and in meristems with impermanent apical initials (stochastic meristems) which have a méristème d’attente. Diplontic selection is maximized in apical meristems in which the initials and derivative cells are least determined ontogenetically, thus allowing maximum intercellular competition (stochastic meristems). In spite of these mechanisms, the individual ramet meristems in long-lived genets still may be expected to diverge genetically through the fixation of mutations in the small cell pools within these meristems by mechanisms similar to Muller’s Ratchet.

The continued accumulation of disadvantageous mutations within the apical initials of ramet apical meristems should ultimately reduce the reproductive capacity (sexual) of ramets. Many plant characteristics may be viewed as mechanisms which purge such mutational load without proportionate decreases in reproductive capacity. Thus characteristics such as pollen competition, low seed-ovule ratios and selective seed or fruit abortion may all be aspects of a soft selection sieve whereby mutational load is eliminated with little sacrifice in overall reproductive capacity. In long-lived plants, outbreeding mechanisms also may represent adaptations to increase fitness by covering recessive lethal and other kinds of disadvantageous alleles (mutational load). Plant genetic systems therefore may not represent a compromise “between the conflicting requirements of fitness and flexibility” but rather a means of negating or repairing recurrent mutational load. Thus genetic systems may be a means of achieving maximum immediate fitness rather than future evolutionary change.


Apical Meristem Apical Cell Mutational Load Tunica Layer Apical Initial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balkema, G. H., 1972, Diplontic drift in chimeric plants, Radiation Botany, 12:51–55.CrossRefGoogle Scholar
  2. Bawa, K. S., 1980, Evolution of dioecy in flowering plants, Annual Rev. Ecol. Syst., 11:15–39.CrossRefGoogle Scholar
  3. Bawa, K. S., 1984, The evolution of dioecy-concluding remarks, Ann. Missouri Bot. Gard., 71:294–296.CrossRefGoogle Scholar
  4. Bawa, K. S., and Beach, J. H., 1981, Evolution of sexual systems in flowering plants, Ann. Missouri Bot. Gard., 68:254–274.CrossRefGoogle Scholar
  5. Bell, G., 1982, “The Masterpiece of Nature,” University of California Press, Berkeley.Google Scholar
  6. Bergann, F., and Bergann, L., 1962, Uber Umschichtungen (Translokationen) an den Sprossscheiteln periklinaler Chimaren, Zuchter, 32:110–119.Google Scholar
  7. Bierhorst, D. W., 1971, “Morphology of Vascular Plants,” The Macmillan Co., New York.Google Scholar
  8. Bierhorst, D. W., 1977, On the stem apex, leaf initiation and early leaf ontogeny in Filicalean ferns, Amer. J. Bot., 74:125–152.CrossRefGoogle Scholar
  9. Buchholz, J. T., 1922, Developmental selection in vascular plants, Bot. Gaz., 73:249–286.CrossRefGoogle Scholar
  10. Buiatti, M., Baroncelli, S., Testi, R., and Boscariol, P., 1970, The effect of environment on diplontic selection in irradiated Gladiolus corms, Radiation Botany, 10:531–538.Google Scholar
  11. Buss, L. W., 1983, Evolution, development and the units of selection, Proc. Natl. Acad. Sci. USA, 80:1387–1391.PubMedCrossRefGoogle Scholar
  12. Buvat, R., 1952, Structure, evolution et functionnement du meristeme apical de quelques dicotyledones, Ann. Sci. Nat. Bot. Ser., 13:199–300.Google Scholar
  13. Cairns, J., 1975, Mutation, selection and the natural history of Cancer, Nature, 225:197–200.CrossRefGoogle Scholar
  14. Charlesworth, B., and Charlesworth, D., 1978, A model for the evolution of dioecy and gynodioecy, Amer. Naturalist, 112: 975–997.CrossRefGoogle Scholar
  15. Chen, C. H., and Ross, J. G., 1965, Colchicine-induced somatic chromosome reduction in sorghum. V. Diploidization of the stem apex after treatment of tetraploid seedlings, Can. J. Genet. Cytol., 7:21–30.Google Scholar
  16. Cook, R. E., 1983, Clonal plant populations, American Scientist, 71:244–252.Google Scholar
  17. Crumpacker, D. W., 1967, Genetic loads in maize and other cross-fertilized plants and annuals, Evol. Biol., 1:306–424.Google Scholar
  18. Cuany, R. L., Sparrow, A. H., and Pond, V., 1958, Genetic response of Antirrhinum majus to acute and chronic plant irradiation, Z. Induktive Abslammuings. u. Vererbungolehre, 89:7–13.Google Scholar
  19. Dermen, H., 1969, Directional cell division in shoot apices, Cytologia, 34:541–558.CrossRefGoogle Scholar
  20. Dobzhansky, T., Ayala, F. J., Stebbins, G. L., and Valentine, J. W., 1977, “Evolution,” W. H. Freeman, San Francisco.Google Scholar
  21. Esau, K., 1953, “Plant Anatomy,” J. Wiley and Sons, New York.Google Scholar
  22. Esau, K., 1977, “Anatomy of Seed Plants,” J. Wiley and Sons, New York.Google Scholar
  23. Gaul, H., 1965, Selection in M1 generation after mutagenic treatment of barley seeds, in: “Induction of Mutations and the Mutation Process,” J. Veleminsky and T. Gichner, eds., Czechoslovak Academy of Sciences, Prague, pp. 62–71.Google Scholar
  24. Gifford, E. M., 1954, The shoot apex in angiosperms, Bot. Rev., 20:447–529.CrossRefGoogle Scholar
  25. Gifford, E. M., and Corson, G. E., 1971, The shoot apex in seed plants, Bot. Rev., 37:143–229.CrossRefGoogle Scholar
  26. Grant, V., 1975, “Genetics of Flowering Plants,” Columbia University Press, New York.Google Scholar
  27. Grinikh, L. I., Shevchenko, V. V., Grigor’eva, G. A., and Draginskaya, L. Ya., 1974, Study of chimerism in the reproductive tissue of Arabidopsis thaliana plants following irradiation of seeds, Genetika, 10:18–28.Google Scholar
  28. Grodzinsky, D. M., and Gudkov, I. M., 1982, Heterogeneity of meri-stems — the basis of higher plant reliability. Academy of Sciences of the Ukrainian S.S.R., Physiology and Biochemistry of Cultivated Plants, 14:107–118 (translated from Russian).Google Scholar
  29. Haigh, J., 1978, The accumulation of deleterious genes in a population — Muller’s Ratchet, Theor. Pop. Biol., 14:251–267.CrossRefGoogle Scholar
  30. Hamrick, J. L., 1979, Genetic variation and longevity, in: “Topics in Plant Population Biology,” O. T. Solbrig, S. Jain, G. B. Johnson and P. H. Raven, eds., Columbia University Press, New York, pp. 84–113.Google Scholar
  31. Hillier, H. G., 1972, Hillier’s Manual of Trees and Shrubs, A. S. Baines and Co., New York.Google Scholar
  32. Johnson, M. A., 1951, The shoot apex in gymnosperms, Phytomorphology, 1:188–204.Google Scholar
  33. Kay, H. E. M., 1965, How many cell-generations?, The Lancet, 2: 418–419.CrossRefGoogle Scholar
  34. Kirk, J. T. O., and Tilney-Bassett, R. A. E., 1978, “The Plastids,” Elsevier/North-Holland Biomedical Press, New York.Google Scholar
  35. Klekowski, E. J., Jr., 1984, Mutational load in clonal plants: A study of two fern species, Evolution, 38:417–426.CrossRefGoogle Scholar
  36. Klekowski, E. J., Jr., and Kazarinova-Fukshansky, N., 1984a, Shoot apical meristems and mutation: Fixation of selectively neutral cell genotypes, Amer. J. Bot., 71:22–27.CrossRefGoogle Scholar
  37. Klekowski, E. J., Jr., and Kazarinova-Fukshansky, N., 1984b, Shoot apical meristems and mutation: Selective loss of disadvantageous cell genotype, Amer. J.Bot., 71:28–34.CrossRefGoogle Scholar
  38. Klekowski, E. J., Jr., Kazarinova-Fukshansky, N., and Mohr, H., 1985, Shoot apical meristems and mutations: Stratified meristems and angiosperm evolution, Amer. J. Bot., (submitted).Google Scholar
  39. Kuligowski-Andres, J., and Tourte, Y., 1979, La determination des cellules apicales chez une Pteridophyte; role particulier du genome paternel, Bull. Soc. bot. Fr., Lettres bot., 126: 491–505.Google Scholar
  40. Kuligowski-Andres, J., Tourte, Y., and Faivre-Baron, M., 1979, La differenciation cellulaire de l’embryon: genome paternel et cellules organogenes chez une Pteridophyte, C. R. Acad. Sc. Paris, 289:1093–1096.Google Scholar
  41. Langenauer, H., and Davis, E. L., 1973, Helianthus annuus responses to acute x-irradiation. I. Damage and recovery in the vegetative apex and effects on development, Bot. Gaz., 134:301–316.CrossRefGoogle Scholar
  42. Langridge, J., 1958, A hypothesis of developmental selection exemplified by lethal and semi-lethal mutants of Arabidopsis, Aust. J.Biol. Sci., 11:58–68.Google Scholar
  43. Levin, D. A., 1984, Inbreeding depression and proximity-dependent crossing success in Pholx drummondii, Evolution 38:116–127.CrossRefGoogle Scholar
  44. Lintilhac, P. M., and Green, P. B., 1976, Patterns of microfibrillar order in a dormant fern apex, Amer. J. Bot., 63:726–728.CrossRefGoogle Scholar
  45. Lloyd, D. G., 1982, Selection of combined versus separate sexes in seed plants, Amer. Naturalist, 120:571–585.CrossRefGoogle Scholar
  46. Lorz, H., and Scowcroft, W. R., 1983, Variability among plants and their progeny regenerated from protoplasts of Su/su heterozygotes of Nicotiana tabacum, Theor. Appl. Genet., 66:67–75.CrossRefGoogle Scholar
  47. Lyman, J. C., and Ellstrand, N. C., 1984, Clonal diversity in Taraxacum officinale (Compositae) an apomict, Heredity, 53: 1–10.CrossRefGoogle Scholar
  48. McAlpin, B. W., and White, R. A., 1974, Shoot organization in the filicales: the promeristem, Amer. J. Bot., 61:562–579.CrossRefGoogle Scholar
  49. Meinke, D. W., and Sussex, I. M., 1979a, Embryo-lethal mutants of Arabidopsis thaliana: A model system for genetic analysis of plant embryo development, Develop. Biol., 72:50–61.PubMedCrossRefGoogle Scholar
  50. Meinke, D. W., and Sussex, I. M., 1979b, Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana, Develop. Biol., 72:62–72.PubMedCrossRefGoogle Scholar
  51. Meins, F., Jr., 1983, Heritable variation in plant cell culture, Ann. Rev. Plant Physiol., 34:327–346.CrossRefGoogle Scholar
  52. Mulcahy, D. L., and Mulcahy, G. B., 1983, Gametophytic self-incompatibility reexamined. Science, 220:1247–1251.PubMedCrossRefGoogle Scholar
  53. Muller, A. J., 1965, The chimerical structure of M1 plants and its bearing on the determination of mutation frequencies in Arabidopsis, in: “Introduction of Mutations and the Mutation Process,” J. Veleminsky and T. Gichner, eds., Czechoslovak Academy of Sciences, Prague, pp. 46–52.Google Scholar
  54. Muller, H. J., 1964, The relation of recombination to mutational advance, Mutat. Res., 1:2–9.CrossRefGoogle Scholar
  55. Neilson-Jones, W., 1969, “Plant Chimeras,” (2nd ed.), Methuen and Co., London.Google Scholar
  56. Newman, I. V., 1965, Pattern in the meristems of vascular plants. III. Pursuing the patterns where no cell is a permanent cell, J. Linn. Soc. London Bot., 59:185–214.CrossRefGoogle Scholar
  57. Park, Y. S., and Fowler, D. P., 1984, Inbreeding in black spruce (Picea mariana (Mill.) B.S.P.): self-fertility, genetic load, and performance, Can. J.For. Res., 14:17–21.CrossRefGoogle Scholar
  58. Pohlheim, F., 1980, Zur sprossvariation bei den Cupressaceae, Wiss. Z. d. Humboldt-Univ. zu Berlin, Math.-Nat. R., 39S:295–306.Google Scholar
  59. Popham, R. A., 1951, Principal types of vegetative shoot apex Organization in vascular plants, Ohio Jour. of Science, 51: 249–270.Google Scholar
  60. Pratt, C., Ourecky, D. K., and Einset, J., 1967, Variation in apple cytochimeras, Amer. J. Bot., 54:1295–1301.CrossRefGoogle Scholar
  61. Reichardt, A., 1955, Experimentalle Untersuchungen uber den Effekt von Rontgenstrahlen in der vegetativen Vermehrung einer alten Rebensorte, Die Gartenbauwissenschaft, 20:355–413.Google Scholar
  62. Rives, M., 1961, Bases genetiques de la selection clonale chez la vigne, Ann. Amelior. Plantes, 11:337–348.Google Scholar
  63. Ruth, J., Klekowski, Jr., E. J., and Stein, O. L., 1985, Impermanent initials of the shoot apex and diplontic selection in a juniper chimera, Amer. J. Bot., (in press).Google Scholar
  64. Shepard, J. F., Bidney, D., and Shakin, E., 1980, Potato protoplasts in plant improvement, Science, 28:17–24.CrossRefGoogle Scholar
  65. Simmons, F. C., and Crow, J. F., 1977, Mutations affecting fitness in Drosophila populations, Ann. Rev. Genet., 11:49–78.PubMedCrossRefGoogle Scholar
  66. Soma, K., and Ball, E., 1964, Studies of the surface growth of the shoot apex of Lupinus albus, Brookhaven Symp. Biol., 16:13–45.Google Scholar
  67. Sprague, G. F., Russel, W. A., and Penny, L. H., 1960, Mutations affecting quantitative traits in the selfed progeny of doubled monoploid maize stocks, Genetics, 45:855–866.PubMedGoogle Scholar
  68. Stebbins, G. L., 1950, “Variation and Evolution in Plants,” Columbia University Press, New York.Google Scholar
  69. Steeves, T. A., and Sussex, I. M., 1972, Patterns in Plant Development, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar
  70. Stephensen, A. G., and Bertin, R. I., 1983, Male competition, female choice, and sexual selection in plants, in: “Pollination Biology,” L. Real, ed., Academic Press, New York, pp. 110–151.Google Scholar
  71. Stewart, R. N., 1978, Ontogeny of the primary body in chimeral forms of higher plants, in: “The Clonal Basis of Development,” S. Subtelny and I. M. Sussex, eds., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 131–160.Google Scholar
  72. Stewart, R. N., and Dermen, H., 1970, Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras, Amer. J. Bot., 57:816–826.CrossRefGoogle Scholar
  73. Stewart, R. N., and Dermen, H., 1979, Ontogeny in monocotyledons as revealed by studies of the developmental anatomy of periclinal chloroplast chimeras, Amer. J.Bot., 66:47–58.CrossRefGoogle Scholar
  74. Sussex, I., and Rosenthal, D., 1973, Differential 3H-Thymidine labeling of nuclei in the shoot apical meristern of Nicotiana, Bot. Gaz., 134:295–301.CrossRefGoogle Scholar
  75. Thielke, C., 1959, Der Sprossscheitel in der Gattung Saccharum, Naturwiss., 46:478–479.CrossRefGoogle Scholar
  76. Thompson, M. M., and Olmo, H. P., 1963, Cytohistological studies of cytochimeric and tetraploid grapes, Amer. J.Bot., 50: 901–906.CrossRefGoogle Scholar
  77. Tilney-Bassett, R. A. E., 1963, The structure of periclinal chimeras, Heredity, 18:265–285.CrossRefGoogle Scholar
  78. Tourte, Y., Kuligowski-Andres, J., and Barbier-Ramond, C., 1980, Comportement diffeentiel des chromatines paternelles et maternelles au cours de l’embryogenee d’une fougee: Le Marsilea, European Journal of Cell Biology, 21:28–36.PubMedGoogle Scholar
  79. Vaughn, K. C., 1983, Chimeras and variegation: problems in propagation, Hort. Science, 18:845–848.Google Scholar
  80. Wallace, B., 1968, “Topics in Population Genetics,” Norton, New York.Google Scholar
  81. Wallace, B., 1975, Hard and soft selection revisited, Evolution, 29:465–473.CrossRefGoogle Scholar
  82. Wallace, B., 1981, Basic Population Genetics, Columbia Press, New York.Google Scholar
  83. White, J., 1979, The plant as a metapopulation, Ann. Rev. Ecol. Syst., 10:109–145.CrossRefGoogle Scholar
  84. Whitham, T. G., and Slobodchikoff, C. N., 1981, Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants, Oecologia (Berl.), 49:287–292.CrossRefGoogle Scholar
  85. Wiens, D., 1984, Ovule survivorship, brood size, life history, breeding systems, and reproductive success in plants, Oecologia (Berl.), (in press).Google Scholar
  86. Willson, M. F., 1979, Sexual selection in plants, Amer. Naturalist, 113:777–790.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Edward J. KlekowskiJr.
    • 1
  • Hans Mohr
    • 2
  • Nina Kazarinova-Fukshansky
    • 2
  1. 1.Botany DepartmentUniversity of MassachusettsAmherstUSA
  2. 2.Biologisches Institut IIUniversität FreiburgFreiburg im BreisgauFederal Republic of Germany

Personalised recommendations