Skip to main content

Mobile Elements in Maize: A Force in Evolutionary and Plant Breeding Processes

  • Chapter

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Summary

Mobile elements in maize Zea mays L. are DNA segments of various sizes that insert into DNA sequences. When a mobile element is inserted into a functional gene, the gene becomes incapacitated by the element interrupting its activity. This interruption in the genes’ functional capacity is caused by precocious termination of the transcript or by an early stop signal because it is possible to form a chimeric transcript.

Mobile elements are varied in size and functional capacity and are distinguished as different systems composed of a regulatory and receptor element. A receptor element originates as a defective regulatory element that has lost the capacity to induce excision events. When an element (regulatory or receptor) is inserted, the target-site DNA duplicates a DNA sequence of three or more DNA bases and the size of the element is excised, several events may occur, including the retention of the duplication, a return to wild type, or the alteration of the sequences including the duplication. This alteration in DNA sequences leads to codon changes, or frameshifts in the transcript that have consequence on the protein that is formed from that gene. This would contribute to genetic diversity.

In a canvass for active mobile elements of a limited sample of an important corn breeding population, the BSSS series (Iowa Stiff Stalk Synthetic), two (Uq and Mrh) of seven active mobile elements tested for were found. These were present in four of the six cycles of BSSS sampled, though only the C3 cycle had both elements present. The others did not expose the elements, probably due to a limited sample.

It was anticipated that the excessive alterations that were induced by mobile elements in maize will generate the type of diversity leading to genotypes with selective attributes. None of the inbreds tested for had elements indicating that their effects, coupled with breeding protocol, would tend to eliminate mobile element presence in inbred lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennetzen, J, L., Swanson, J., Taylor, C., and Freeling, M., 1984, DNA insertion in the first intron of maize Adhl affects message levels: cloning of progenitor and mutant Adhl alleles, Proc. Natl. Acad. Sci. USA, 13:4125–4129.

    Article  Google Scholar 

  • Blumberg vel Spalve, J., Shepherd, N, S., and Saedler, H., 1985, The Teol insert from Zea mexicana teosinte Guerrero is a composite of the Cin2 and Cin3 elements, Maize Genet. Coop. Newsl., 59:35.

    Google Scholar 

  • Bogenschutz, T. G., 1984, A comparison between reproduction by full-sib mating and by self-pollination to maintain genetic stability of maize inbred lines, Unpublished M.S. thesis, Library, Iowa State University, Ames, Iowa.

    Google Scholar 

  • Bonas, U., Sommer, H., Harrison, B., and Saedler, H., 1984, The transposable element Taml of Antirrhinum majus is 17 kb long, Mol. Gen. Genet., 194:138–143.

    Article  CAS  Google Scholar 

  • Brink, R. A., and Nilan, R, A., 1952, The relation between light variegated and medium variegated pericarp in maize, Genetics, 37:519–544.

    PubMed  CAS  Google Scholar 

  • Burr, B., S., Evola, S. V., Burr, F. A., and Beckmann, J. S., 1983, The application of restriction fragment length polymorphism to plant breeding, in: “Genetic Engineering: Principles and Methods 5,” J, K Setlow and A. Hollaender, eds., pp, 45–59.

    Google Scholar 

  • Courage-Tebbe, U., Döring, H. P., Fedoroff, N., and Starlinger, P., 1983, The controlling element Ds as the Shrunken locus in Zea mays ; structure of the unstable sh-m5933 allele and several revertants, Cell, 34:383–393.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C., 1868, “The variation of animals and plants under domestication,” Orange Judd & Co. N.Y. 494 pp, London 1:411 pp.

    Google Scholar 

  • Dellaporta, S. L., Chomet, P. S., Mottinger, J. P., Wood, J. A., Yu, S.-M., and Hicks, J. B., 1984, Endogenous transposable elements associated with virus infection in maize, Cold Spring Harbor Symp, Quant, Biol., 49:321–328.

    Article  CAS  Google Scholar 

  • Dooner, H. K., 1981, Regulation of the enzyme UFGT by the controlling element Ds in bz-m4, an unstable mutant in maize, Cold Spring Harbor Symp, Quant, Biol., 45:457–462.

    Article  CAS  Google Scholar 

  • Dover, G., 1982, Molecular drive: a cohesive mode of species evolution, Nature, 229:111–117.

    Article  Google Scholar 

  • Dudley, J, W., 1977, 76 Generations of selection for oil and protein percentage in maize, in:”Proc, Int. Conf, Quant. Genet.,” Iowa State Univ. Press, Ames, Iowa, pp. 459–473.

    Google Scholar 

  • Dudley, J, W., 1984, Theory for identification and use of exotic germplasm in maize breeding programs, Maydica, 29: 391–407.

    Google Scholar 

  • Eberhart, S. A., Debela, S., and Hailauer, A, R., 1973, Reciprocal recurrent selections in the BSSS and BSCB1 maize populations and half-sib selection in BSSS, Crop Science, 13: 451–456.

    Article  Google Scholar 

  • Fedoroff, N., Wessler, S., and Shure, M., 1983, Isolation of the transposable maize controlling elements Ac and Ds, Cell, 35: 235–242.

    Article  CAS  Google Scholar 

  • Files, J, G., Carr, S., Hirsh, D., 1983, Actin gene family of Caenorhabditis elegans, Jour. of Mol. Biology, 164:355–375.

    Article  CAS  Google Scholar 

  • Friedemann, P., and Peterson, P. A., 1982, The Uq controlling-element system in maize, Mol. Gen. Genet., 187: 19–29.

    Article  CAS  Google Scholar 

  • Gerats, A. G. M., Groot, S. P. C., Peterson, P. A., and Schram, A. W., 1983, Regulation of UFGT activity in the bz-m4 allele of Zea mays: a possible case of gene fusion, Mol. Gen. Genet., 190:1–4.

    Google Scholar 

  • Gonella, J. A., 1976, Controlling elements in a tribal maize from Colombia Fcu, a two-unit system, Unpublished Ph.D. Thesis, Iowa State University, Ames, Iowa.

    Google Scholar 

  • Gonella, J., and Peterson, P.A., 1975, The presence of En among some maize lines from Mexico, Columbia, Bolivia and Venezuela, Maize Genet. Coop. Newsl., 49:73.

    Google Scholar 

  • Gonella, J. A., and Peterson, P. A., 1977, Controlling elements in a tribal maize from Columbia: Fcu, a two unit system, Genetics, 85:629–645.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., 1982, Darwinism and the expansion of evolutionary theory, Science, 216:380–387.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J., 1984, Darwin’s untimely burial, in: “Conceptual Issues in Evolutionary Biology,” E. Sober, ed., The MIT Press, Cambridge, London, 725 pp.

    Google Scholar 

  • Gupta, M., Bertram, I., Shepherd, N.S. and Saedler, H., 1983, Cinl, a family of dispersed repetitive elements in Zea mays, Mol. Gen. Genet., 192:373–377.

    Article  CAS  Google Scholar 

  • Gupta, M., Shepherd, N. S. Bertram, I., and Saedler, H., 1984, Repetitive sequences and their organization on genomic clones of Zea mays, Eur, Mol. Biol. Organ. J., 3:133–139.

    CAS  Google Scholar 

  • Hallauer, A. R., Russell, W. A., and Smith O. S., 1983, Quantitative analysis of Iowa stiff stalk synthetic, Stadler Genetic Symp., J. P. Gustafson, ed., 15:83–104.

    Google Scholar 

  • Hehl, R., Shepherd, N.S., and Saedler, H., 1985, DNA sequence homology among members of the Cinl repetitive DNA family in maize and teosinte, Maydica, in press.

    Google Scholar 

  • Honjo, T., 1983, Immunoglobulin genes, Annual Rev. Immuno., 1:499–528.

    Article  CAS  Google Scholar 

  • Hubby, J. L., and Lewontin, R. C., 1966, A molecular approach to the study of genic heterozygosity in natural populations, I. The number of alleles at different loci in Drosophila pseudoobscura, Genetics, 54:577–594.

    PubMed  CAS  Google Scholar 

  • Hudson, R. R., 1982, Estimating genetic variability with restriction endonucleases, Genetics, 100:711–719.

    PubMed  CAS  Google Scholar 

  • Hunkapiller, T., Huang, H., Hood, L., and Campbell, J. H., 1983, Impact of modern genetics on evolutionary theory, in: “Perspectives on Evolution,” R. Milkman, ed., Sinauer Associates, Sunderland, Mass., pp. 164–189.

    Google Scholar 

  • Johns, M. A., Mottinger, J., and Freeling, M., 1985, A low copy number, copia-like transposon in the maize genome, Eur. Mol. Biol. Organ. J., under revisison.

    Google Scholar 

  • Johns, M.A., Strommer, J. N., and Freeling, M., 1983, Exceptionally high levels of restriction site polymorphism in DNA near the maize Adhl gene, Genetics, 105:733–743.

    PubMed  CAS  Google Scholar 

  • Jordan, E., Saedler, H., and Starlinger, P., 1968, Oand strong-polar mutations in the gal operon are insertions, Mol. Gen. Genet., 102:353–363.

    Article  PubMed  CAS  Google Scholar 

  • Kermicle, J. L., 1984, Recombination between components of a mutable gene system in maize, Genetics, 107:489–500.

    PubMed  CAS  Google Scholar 

  • Lucotte, G., Gal, A., Nahon, J.-L, and Sala-Trepat, J. M., 1982, Eco-h1 restriction-site polymorphism of the albumin gene in different inbred strains of rat, Biochem. Genet., 20:1105–1115.

    Article  PubMed  CAS  Google Scholar 

  • Lewontin, R. C., and J. L. Hubby, 1966, A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura, Genetics, 54:595–609.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1947, Cytogenetic studies of maize and Neurospora, Carnegie Inst. Wash. Year Book, 46:146–152.

    Google Scholar 

  • McClintock, B., 1951, Chromosome organization and genetic expression, Cold spring Harbor Symp. Quant. Biol., 16:13–47.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1954, Mutations in maize and chromosomal aberrations in Neurospora, Carnegie Inst. Wash. Year Book, 53:254–260.

    Google Scholar 

  • McClintock, B., 1961, Some parallels between gene control systems in maize and in bacteria, Am Nat., 95:265–277.

    Article  Google Scholar 

  • McClintock, B., 1965, The control of gene action in maize, Brookhaven Symp. Biol., 18:162.

    Google Scholar 

  • McClintock, B., 1967, Genetic systems regulating gene expression during development, Dev. Biol. Suppl., 1:84–112.

    Google Scholar 

  • McDonald, J. F., 1983, The molecular basis of adaptation:a critical review of relevant ideas and observations, Annu. Rev. Ecol. Syst., 14:77–102.

    Article  Google Scholar 

  • Nevers, P., Shepherd, N.S., and Saedler, H., 1985, Plant transposable elements, Advances in Botanical Research, in press.

    Google Scholar 

  • Oberthur, E., and Peterson, P. A., 1984, Uq controlled mutable allele at the c locus, Maize Genet. Coop. Newsl., 58:4–5.

    Google Scholar 

  • Ohta, T., 1984a, Some models of gene conversion for treating the evolution of multigene families, Genetics, 106: 517–528.

    PubMed  CAS  Google Scholar 

  • Ohta, T., 1984b, Population genetics of transposable elements, IMA J. Math. Appl. Med. Biol., 1:17–29.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., and Dover, G. A., 1984, The cohesive population genetics of molecular drive, Genetics, 108:501–521.

    PubMed  CAS  Google Scholar 

  • Peacock, W. J., Dennis, E. S., Gerlach, W. L., Llewellyn, D., Lorz, H., Pryor, A. J., Sachs, M. M., Schwartz, D., and Sutton, W. D., 1983, Gene transfer in maize: Controlling elements and the alcohol dehydrogenase genes, in:”Proc. 15th Miami Winter Symp.,” K. Downey, K. Vollmy, F. Ahmad, and J. Schulty, eds., Academic Press: New York, 20:311–320.

    Google Scholar 

  • Penny, L. H., and Eberhart, S. A., 1971, Twenty years of reciprocal recurrent selection with two synthetic varieties of maize (Zea mays L.), Crop Sci., 11:900–903.

    Article  Google Scholar 

  • Pereira, A., Schwarz-Sommer, Zs., Gierl A., Bertram, I., Peterson, P. A., and Saedler, H., 1985, Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays, Eur. Mol. Biol. Organ. J., 4:17–23.

    CAS  Google Scholar 

  • Perutz, M. F., 1983, Species adaptation in a protein molecule, Mol. Biol. Evol., 1: 1–28.

    PubMed  CAS  Google Scholar 

  • Peterson, P. A., 1953, The mutable pale green locus, Maize Genet. Coop. Newsl., 27:58.

    Google Scholar 

  • Peterson, P. A., 1960, The pale green mutable system in maize, Genetics, 45:115–133.

    PubMed  CAS  Google Scholar 

  • Peterson, P. A., 1961, Mutable al of the En system in maize, Genetics, 46:759–771.

    PubMed  CAS  Google Scholar 

  • Peterson, P. A., 1966, Phase variation of regulatory elements in maize, Genetics, 54:249–266.

    PubMed  CAS  Google Scholar 

  • Peterson, P. A., 1967, A comparison of the action of regulatory systems in maize and lysogenic bacteria, Genetics, 56:581.

    Google Scholar 

  • Peterson, P. A., 1970, Controlling elements and mutable loci in maize: Their relationship to bacterial episomes, Genetica, 41:33–56.

    Google Scholar 

  • Peterson, P. A.. 1978, Controlling elements: The induction of mutability at the A2 and C loci in maize. in: “Maize Breeding and Genetics,” D. B. Waiden, ed., John Wiley & Sons, NY., pp. 601–635.

    Google Scholar 

  • Peterson, P. A., 1981, Instability among the components of a regulatory element transposon in maize, Cold Spring Harbor Symp. Quant. Biol., 45: 447–455.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, P. A., 1983, Newly originated mutable alleles at the bz locus, Maize Genet. Coop. Newsl., 57:2.

    Google Scholar 

  • Peterson, P. A., 1984, C-I changes, Maize Genet. Coop. Newsl., 58:2–3.

    Google Scholar 

  • Peterson, P. A., 1985a, A dominant color allele C-m(r), responsive to a specific Uq, Maize Genet. Coop. Newsl., 59: in press.

    Google Scholar 

  • Peterson, P. A., 1985b, The isolation of En-1 in the wx 84–4 allele, Maize Genet. Coop. Newsl., 59: in press.

    Google Scholar 

  • Peterson, P. A., 1985, Plant mobile elements, CRC, (submitted).

    Google Scholar 

  • Peterson, P. A., and Cormack, J., 1984, wx alleles newly originated from an En-containing plot, Maize Genet. Coop. Newsl., 58:3.

    Google Scholar 

  • Pohlman, R. F., Fedoroff, N. V., and Messing, J., 1984, The nucleotide sequence of the maize controlling element activator, Cell, 37:635–643.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, M. M., 1936, The effect of varying gene dosage on aleurone colour in maize, J. Genet., 33:347–354.

    Article  Google Scholar 

  • Rhoades, M. M., and Dempsey, E., 1982, The induction of mutable systems in plants with the high-loss mechanism, Maize Genet. Coop. Newsl., 56: 21–26.

    Google Scholar 

  • Robertson, D. S., 1978, Characterization of a mutator system in maize, Mutation Research, 51: 21–28.

    Article  Google Scholar 

  • Robertson, D. S., and Stinard, P., 1984, Putative forward mutation frequencies at the yl and wx loci in the presence of Mu, Maize Genet. Coop. Newsl., 58:11–12.

    Google Scholar 

  • Robinson, R. R., Germain, R. N., Mckean, D. J., Mescher, M., and Seidman, J. G., 1983, Extensive polymorphism surrounding the murine Ia abeta chain gene, Jour. of Immuno., 131:2025–2031.

    CAS  Google Scholar 

  • Russell, W. A., 1974, Comparative performance for maize hybrids representing different eras of maize breeding, Proc. 29th Annu. Corn Sorghum Res. Conf., Chicago, pp. 81–101.

    Google Scholar 

  • Russell, W. A., 1984, Agronomic performance of maize cultivars representing different eras of breeding, Maydica, 29:375–390.

    Google Scholar 

  • Russell, W. A., 1985, Comparisons of the hybrid performance of maize inbred lines developed from the original and improved cycles of BSSS, Maydica, in press.

    Google Scholar 

  • Russell, W. A., and Vega, U. A., 1973, Genetic stability of quantitative characters in successive generations in maize inbred lines, Euphytica, 22:172–180.

    Article  Google Scholar 

  • Sachs, M. M., Peacock, W.J., Dennis, E. S., and Gerlach, W. S., 1983, Maize Ac/Ds controlling elements, a molecular viewpoint, Maydica, 28:289–302.

    CAS  Google Scholar 

  • Saedler, H., Bonas, U., Deumling, B., Gupta, M., Hahlbrock, K., Harrison, B. J., Kreuzaler, F., Peterson, P. A., Reif, J., Schwarz-Sommer, Zs., Shepherd, N., Sommer, H., Ubben, D., and Wienand, U., 1983, Transposable elements in plants, in: “Genetic Rearrangement,” K. F. Chater, C. A. Cullis, D. A. Hopwood, A. A. W. B. Johnston, and H. W. Woolhouse, eds., The Fifth John Innes Symposium, Croom Helm Ltd., London and Canberra, pp. 107–116.

    Google Scholar 

  • Saedler, H., and Nevers, P., 1985, Transposition in plants: A molecular model, Eur. Mol. Biol. Organ. J., 4:585–590.

    CAS  Google Scholar 

  • Salamini, F., 1981, Controlling elements at the Opaque-2 locus of maize: their involvement in the origin of spontaneous mutation, Cold Spring Harbor Symp. Quant. Biol., 45:467–476.

    Article  PubMed  CAS  Google Scholar 

  • Schnable, P. and Peterson, P. A., 1984, bz-m805137-A bronze mutable of the Cy system, Maize Genet. Coop. Newsl., 58:9.

    Google Scholar 

  • Schnable, P., and Peterson, P. A., 1985, System relationships of the Cy transposable element system including tests against Robertson’s mutator system, Maize Genet. Coop. Newsl., 59:4.

    Google Scholar 

  • Schwarz-Sommer, Zs., Gierl A., Cuypers, H., Peterson, P. A., and Saedler, H., 1985, Plant transposable elements generate the DNA sequence diversity needed in evolution, Eur. Mol. Biol. Organ. J., 4:591–597.

    CAS  Google Scholar 

  • Schwarz-Sommer, Zs., Gierl, A., Klosgen, R. B., Wienand, U., Peterson, P. A., and Saedler, H., 1984, The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wxm-8 allele of Zea mays, Eur. Mol. Biol. Organ. J., 3:1021–1028.

    CAS  Google Scholar 

  • Shaw, C. R., 1965, Electrophoretic variation in enzymes, Science, 149:936–43.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, N. S., Schwarz-Sommer, Zs., Blumberg vel Spalve, J., Gupta, M., Wienand, U., and Saedler, H., 1984, Similarity of the Cinl repetitive family of Zea mays to eukaryotic transposable elements, Nature, 307: 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, N.S., Schwarz-Sommer, Zs., Wienand, U., Sommer, H., Deumling, B., Peterson, P. A., and Saedler, H., 1982, Cloning of a genomic fragment carrying the insertion element Cinl of Zea mays, Mol. Gen. Genet., 188:266–271.

    Article  CAS  Google Scholar 

  • Smith, O. S., 1983, Evaluation of recurrent selection in BSSS, BSCB1, and BS13 maize poulations, Crop Sci., 23:35–40.

    Article  Google Scholar 

  • Sober E. ed., 1984, Conceptual Issues In Evolutionary Biology, The MIT Press, Cambridge, Mass. 725 pp.

    Google Scholar 

  • Sprague, G. F., 1946, Early testing of inbred lines of corn, J. Am. Soc. Agron., 38:108–117.

    Article  Google Scholar 

  • Stuber, C. W., and Goodman, M. M., 1984, Inheritance, intracellular location and genetic variation of 6-phosphogluconate dehydrogenase isozymes in maize, Maydica 29:453–471.

    CAS  Google Scholar 

  • Stuber, C. W., Goodman, M. M., and Moll, R. H., 1982, Improvement of yield and ear number resulting from selection at allozyme loci in a maize population, Crop Sci., 22:737–740.

    Article  Google Scholar 

  • Stuber, C. W., Moll, E. H., Goodman, M. M., Schaffer, H. E., and Weir, B. S., 1980, Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.), Genetics, 95:225–236.

    Google Scholar 

  • Sturtevant, A. H., 1913, The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association, J. Exp. Zool., 43–59.

    Google Scholar 

  • Syvanen, M., 1984. The evolutionary implications of mobile genetic elements, Ann. Rev. Genet., 18:271–293.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. L., 1963, Bacteriophage-induced mutation in Escherichia Coli, Proc. Natl. Acad. Sci. USA, 50:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Weck, E., Courage, U., Döring, H.-P., Fedoroff, N., and Starlinger, P., 1984, Analysis of sh-m6233, a mutation induced by the transposable element Ds in the sucrose synthase gene of Zea mays, Eur. Mol. Biol. Organ. J., 3:1713–1716.

    CAS  Google Scholar 

  • Wickler, W., 1968, “Mimicry”, Weidenfeld and Nicolson, London, 255 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Peterson, P.A. (1986). Mobile Elements in Maize: A Force in Evolutionary and Plant Breeding Processes. In: Gustafson, J.P., Stebbins, G.L., Ayala, F.J. (eds) Genetics, Development, and Evolution. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5137-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5137-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5139-9

  • Online ISBN: 978-1-4684-5137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics