Gene Action and Morphogenesis in Plants

  • G. Ledyard Stebbins
Part of the Stadler Genetics Symposia Series book series (SGSS)


One of the most important unanswered questions facing evolutionists is: “How do those genes act that are responsible for morphogenetic or developmental patterns in multicellular eukaryotes?” The importance of this question lies in the fact that answers to it will provide the most significant links possible between those morphological changes recorded by paleontologists and differences that geneticists can analyze. At present, the gap between the historical documentation of the fossil record and the analysis of evolutionary processes at the level of DNA-coded information is wide and almost completely unbridged, as is clearly shown by the content of the most recent books dealing with development and evolution (Gould, 1977; Raff and Kaufman, 1983).


Growth Substance Mitotic Spindle Meristematic Tissue Guard Cell Mother Reproductive Meristem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basile, D. V., 1969, An experimental approach to the systematics and phylogeny of leafy liverworts, in: “Current Topics in Botany: Symp. Torr. Bot, Club Centennial,” J. E. Gunckel, ed., Academic Press, New York, pp. 120–133.Google Scholar
  2. Basile, D. V., and Basile, M. R., 1984, Probing the evolutionary history of Bryophytes experimentally, J. Hattori. Bot. Lab., 38:91–98.Google Scholar
  3. Brown, D. L., Stearns, M. E., and Macrae, T. H., 1982, Microtubule organizing centres, in: “The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, pp. 55–83.Google Scholar
  4. Cherry, L. M., Case, S. M., and Wilson, A. C., 1978, Frog perspective on the morphological difference between humans and chimpanzees, Science, 200:209–211.CrossRefGoogle Scholar
  5. Clausen, J., 1951, “Stages in the Evolution of Plant Species,” Cornell Univ. Press, Ithaca.Google Scholar
  6. Cutter, E. G., 1971, “Plant Anatomy: Experiment and Interpretation. Part 2. Organs,” Addison-Wesley, Reading.Google Scholar
  7. Edelman, G. M., 1983, Cell-adhesion molecules, Science, 219:450–457.PubMedCrossRefGoogle Scholar
  8. French, J. C., and Paolillo, D. J., Jr., 1975, The effect of the calyptra on the plane of guard cell mother cell division in Funaria and Physcomitrium capsules, Ann. Bot., 39:233–236.Google Scholar
  9. Fulton, C., and Klein, A. O., 1976, “Explorations in Developmental Biology,” Harvard, Cambridge, MA.Google Scholar
  10. Goodwin, B. C., 1984, A relational or field theory of reproduction and its evolutionary implications, in: “Beyond Neo-Darwinism,” M.-W. Ho and P. T. Saunders, eds., Academic Press, London, pp. 219–241.Google Scholar
  11. Gottlieb, L. D., 1984, Genetics and morphological evolution in plants, Amer. Nat., 123:681–709.CrossRefGoogle Scholar
  12. Gould, S. J., 1977, “Ontogeny and Phylogeny,” Harvard Univ. Press, Cambridge.Google Scholar
  13. Grant, V., 1971, “Plant Speciation,” Columbia Press, New York.Google Scholar
  14. Green, P. B., 1963, On mechanisms of elongation, in: “Cytodifferen-tiation and Macromolecular Synthesis: 21st Symp. Soc. Devel. and Growth,” M. Locke, ed., Academic Press, New York, pp. 203–231.CrossRefGoogle Scholar
  15. Green, P. B., 1980, Organogenesis. A biophysical view, Ann. Rev. Plant Physiol., 31:51–82.CrossRefGoogle Scholar
  16. Gunning, E. S., 1982, The cytokinetic apparatus: its development and spatial regulation, in: “The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, pp. 229–292.Google Scholar
  17. Hardham, A. R., 1982, Regulation of polarity in tissues and organs, in: “The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, pp. 377–403.Google Scholar
  18. Hiorth, G., 1942, Zur Genetik und Systematik der amoena-Gruppe der Gattung Godetia, Zeitschr. Ind. Abst.-u. Vererbungsl., 80:289–349.Google Scholar
  19. Hoffman, S., Chuong, C.-M., and Edelman, G. M., 1984, Evolutionary conservation of key structures and binding functions of neural cell adhesion molecules, Proc. Nat. Acad. Sci. U. S. A., 81: 6881–6885.CrossRefGoogle Scholar
  20. Hyams, J. S., 1982, Microtubules, in: “The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, pp. 32–53.Google Scholar
  21. Jaffe, L. F., 1981, The role of ionic currents in establishing developmental pattern, Phil. Trans. Roy. Soc. London B, 295: 553–566.PubMedCrossRefGoogle Scholar
  22. Jones, R. L., and Phillips, I. D. J., 1966, Organs of gibberellin synthesis in light grown sunflower plants, Plant Physiol., 41: 1381–1386.PubMedCrossRefGoogle Scholar
  23. Kimura, M., 1983, “The Neutral Theory of Molecular Evolution,” Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  24. Kny, L., 1902, Uber den Einfluss von Zug und Druck auf die Richtung der Scheidewande in sich theilenden Pflanzenzellen, (Zweite Mittheilung), Jahrb. Wiss. Bot., 37:55–98.Google Scholar
  25. Lindsley, D. L., and Grell, E. H., 1968, “Genetic Variations of Drosophila melanogaster,” Carnegie Inst. Wash. Publ. no. 627.Google Scholar
  26. Lloyd, C. W., and Barlow, P. W., 1982, The co-ordination of cell division and elongation: The role of the cytoskeleton, in: The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, pp. 203–228.Google Scholar
  27. Marchant, H. J., 1982, The establishment and maintenance of plant cell shape by microtubules, in: “The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, pp. 295–319.Google Scholar
  28. Maxson, L. E. R. and Wilson, A. C., 1979, Rates of molecular and chromosome evolution in salamanders, Evolution, 33:734–740.CrossRefGoogle Scholar
  29. McDonald, J. F., 1983, The molecular basis of adaptation: a critical review of relevant ideas and observations, Ann. Rev. Ecol. Syst., 14:77–103.CrossRefGoogle Scholar
  30. Miller, J. H., 1980, Orientation of the plane of cell division in fern gametophytes : the roles of cell shape and stress, Amer. J. Bot., 67:534–542.CrossRefGoogle Scholar
  31. Montezinos, D., 1982, The role of the plasma membrane in cellulose microfibril assembly, in: “The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, New York, pp. 147–162.Google Scholar
  32. Nuccitelli, R., 1983, Transcellular ion currents: signals and effectors of cell polarity, Modern Cell Biol., 2:451–481.Google Scholar
  33. Raff, R. A., and Kaufman, T. C., 1983, “Embryos, Genes and Evolution,” McMillan, New York.Google Scholar
  34. Rayle, D. L., and Cleland, R., 1977, Control of plant cell development by hydrogen ions, in: “Current Topics in Developmental Biology. Vol. II. Pattern Development,” A. Moscona and A. Monroy, eds., Academic Press, New York, pp. 187–214.Google Scholar
  35. Robinson, D. G., and Quader, H., 1982, The microtubule-microfibril syndrome, in: “The Cytoskeleton in Plant Growth and Development,” C. W. Lloyd, ed., Academic Press, London, pp. 109–126.Google Scholar
  36. Rosenblum, I. M. and Basile, D. V., 1984, Hormonal regulation of morphogenesis in Streptocarpus and its relevance to evolutionary history of Gesneriaceae, Amer. J.. Bot., 71:52–64.CrossRefGoogle Scholar
  37. Sinnott, E. W., 1960, “Plant Morphogenesis,” McGraw-Hill, New York.Google Scholar
  38. Smith, A. T., and Stebbins, G. L., 1971, A morphological study of the tomato mutant “curl,” Amer. J. Bot., 58:517–524.CrossRefGoogle Scholar
  39. Stebbins, G. L., 1974, “Flowering Plants: Evolution Above the Species Level,” Harvard Univ. Press, Cambridge.Google Scholar
  40. Stebbins, G. L., 1983, Mosaic evolution: an integrating principle for the modern synthesis, Experientia, 39:823–834.PubMedCrossRefGoogle Scholar
  41. Stebbins, G. L., and Price, H. J., 1971, The developmental genetics of the calcaroides gene in barley. I. Divergent expression at the morphological and histological level, Genetics, 68:527–538.PubMedGoogle Scholar
  42. Stebbins, G. L., and Yagil, E., 1966, The morphogenetic effects of the hooded gene in barley. I. The course of development in hooded and awned genotypes, Genetics, 54:727–741.PubMedGoogle Scholar
  43. Treat-Clemons, L. G., and Doane, W. W., 1984, Biochemical loci of the “fruitfly” Drosophila melanogaster, in: “Genetic Maps, Vol. 3,” S. H. O’Brien, ed., Cold Spring Harbor Laboratory, New York, pp. 309–323.Google Scholar
  44. Tsuchiya, T., Hayashi, J., and Takahashi, R., 1960, Genetic studies in trisomic barley, II. Further studies on the relationships between trisomics and the genetic linkage groups, Jap. J. Genet., 35:153–160.CrossRefGoogle Scholar
  45. Turner, J., Johnson, M., and Eanes, W., 1979, Contrasted modes of evolution in the same genome: allozymes and adaptive change in Heliconius, Proc, Nat. Acad. Sci. U. S. A., 76:1924–1928.CrossRefGoogle Scholar
  46. Valentine, J. W., and Campbell, C. A., 1975, Genetic regulation and the fossil record, Amer. Sci., 63:673–680.PubMedGoogle Scholar
  47. Weisenseel, M. H., Dorn, A., and Jaffe, L. F., 1979, Natural H currents traverse growing roots and root hairs of barley (Hordeum vulgare L.), Plant Physiol., 64:512–518.PubMedCrossRefGoogle Scholar
  48. Wilson, A. C., 1975, Evolutionary importance of gene regulation, in: “Stadler Genetic Symp,” Univ. Missouri, 7:117–133.Google Scholar
  49. Wilson, A. C., Sarich, V. M., Maxson, L. R., 1974, The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein and anatomical evolution, Proc. Nat. Acad. Sci. U. S. A., 71:3028–3030.CrossRefGoogle Scholar
  50. Yagil, E., and Stebbins, G. L., 1969, The morphogenetic effects of the hooded gene in barley. II. Cytological and environmental factors affecting gene expression, Genetics, 62:307–319.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. Ledyard Stebbins
    • 1
  1. 1.Department of GeneticsUniversity of CaliforniaDavisUSA

Personalised recommendations