Intraspecies Genomic Variation

  • Roy J. Britten
Part of the Stadler Genetics Symposia Series book series (SGSS)


Genomic variation is obviously the primary source of evolutionary change, however at present two major issues stand in the way of understanding its full significance: first, we know little yet about the kinds and amounts of variation; second, we need to identify the minor fraction of the variation which affects genes and their regulatory systems. Nevertheless genomic variation is fascinating, both because so little is known and because the data we do have shows unexpectedly large variation. In addition silent or non-coding variation is very much larger than amino acid replacement variation in coding regions of the DNA of the three species for which comparisons can now be made, indicating that selection retards the change of most amino acids in most proteins.


Restriction Fragment Length Polymorphism Replacement Substitution Genome Size Variation Silent Substitution Beta Globin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandraki, D., and Ruderman, J. V., 1985, Multiple polymorphic α- and β-tubulin mRNAs are present in sea urchin eggs, Proc. Natl. Acad. Sci. USA, 82:134–138.PubMedCrossRefGoogle Scholar
  2. Ananiev, E. V., Barsky, V. E., Ilyin, Yu. V., and Ryzic, M. V., 1984, The arrangement of transposable elements in the polytene chromosomes of Drosophila melanogaster, Chromosoma (Berl), 90:366–377.CrossRefGoogle Scholar
  3. Antonarakis, S. E., Boehm, C. D., Giardina, P. J. V., and Kazazian, H. H. Jr., 1982, Nonrandom association of polymorphic restriction sites in the β-globin gene cluster, Proc. Natl. Acad. Sci. USA, 79:137–141.PubMedCrossRefGoogle Scholar
  4. Bachmann, K., Goin, O. B., and Goin, C. J., 1972, Nuclear DNA amounts in vertebrates, Brookhaven Symp. Biol., 23:419–450.PubMedGoogle Scholar
  5. Barker, D., Schafer, M., and White, R., 1984, Restriction sites containing CpG show a higher frequency of polymorphism in human DNA, Cell, 36:131–138.PubMedCrossRefGoogle Scholar
  6. Bell, G. I., Karam, J. H., and Rutter, W. J., 1981, Polymorphic DNA region adjacent to the 5′ end of the human insulin gene, Proc. Natl. Acad. Sci. USA, 78:5759–5763.PubMedCrossRefGoogle Scholar
  7. Bender, W., Spierer, P., and Hogness, D. S., 1983, Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster, J. Mol. Biol., 168:17–33.PubMedCrossRefGoogle Scholar
  8. Bier, K., Kunz, W., and Ribbert, D., 1969, Insect oogenesis with and without lampbrush chromosomes, in: “Chromosomes Today,” Vol. 2, D. Darlington and K. R. Lewis, eds., Plenum Press, New York, pp. 107–115.Google Scholar
  9. Bock, S. C., and Levitan, D. J., 1983, Characterization of an unusual DNA length polymorphism 5′ to the human antithrombin III gene, Nucl. Acids Res., 11:8569–8582.PubMedCrossRefGoogle Scholar
  10. Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C., 1985, DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall, Cell, 40:359–369.PubMedCrossRefGoogle Scholar
  11. Bregliano, J., and Kidwell, M. G., 1983, Hybrid dysgenesis determinants, in: “Mobile Genetic Elements,” J. A. Shapiro, ed., Academic Press, New York, pp. 363–410.Google Scholar
  12. Britten, R. J., 1985, Rates of DNA sequence evolution differ between taxonomic groups, Science, submitted.Google Scholar
  13. Britten, R. J., 1984, Mobile elements and DNA repeats, Carlsberg Res. Commun., 49:169–178.CrossRefGoogle Scholar
  14. Britten, R. J., Cetta, A., and Davidson, E. H., 1978, The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus, Cell, 15:1175–1186.PubMedCrossRefGoogle Scholar
  15. Britten, R. J., Graham, D. E., and Neufeld, B. R., 1974, Analysis of repeating DNA sequences by reassociation, in: “Methods in Enzymology,” 29E, L. Grossman and K. Moldave, eds., Academic Press, New York, pp. 363–406.Google Scholar
  16. Brown, D. D., Wensink, P. C., and Jordan, E., 1971, A comparison of the ribosomal DNAs of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes, J. Mol. Biol., 63:57–73.CrossRefGoogle Scholar
  17. Chakravarti, A., Phillips, J. A., III, Mellits, K. H., Buetow, K. H., and Seeburg, P. H., 1984, Patterns of polymorphism and linkage disequilibrium suggest independent origins of the human growth hormone gene cluster, Proc. Natl. Acad. Sci. USA, 81:6085–6089.PubMedCrossRefGoogle Scholar
  18. Crain, W. R., Eden, F. C., Pearson, W. R., Davidson, E. H., and Britten, R. J., 1976, Absence of short period interspersion of repetitive and non-repetitive sequences in the DNA of Drosophila melanogaster, Chromosoma (Berl), 56:309–326.CrossRefGoogle Scholar
  19. Crain, W. R., Davidson, E. H., and Britten, R. J., 1976b, Contrasting patterns of DNA sequence arrangement in Apis mellifera (honeybee) and Musca domestica (housefly), Chromosoma, 59:1–12.CrossRefGoogle Scholar
  20. Döring, H.-P., and Starlinger, P., 1984, Barbara McClintock’s controlling elements: now at the DNA level, Cell, 39:253–259.PubMedCrossRefGoogle Scholar
  21. Dowsett, A. P., 1983, Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences, Chromosoma (Berl), 88:104–108.CrossRefGoogle Scholar
  22. Dowsett, A. P., and Young, M. W., 1982, Differing levels of dispersed repetitive DNA among closely related species of Drosophila, Proc. Natl. Acad. Sci. USA, 79:4570–4574.PubMedCrossRefGoogle Scholar
  23. Efstratiadis, A., Crain, W. R., Britten, R. J., Davidson, E. H., and Kafatos, F. C., 1976, DNA sequence organization in the lepidopteran Antherae pernyi, Proc. Natl. Acad. Sci. USA, 73:2289–2293.PubMedCrossRefGoogle Scholar
  24. Grula, J. W., Hall, T. J., Hunt, J. A., Giugni, T. D., Graham, G. J., Davidson, E. H., and Britten, R. J., 1982, Sea urchin DNA sequence variation and reduced interspecies differences of the less variable DNA sequences, Evolution, 36:665–676.CrossRefGoogle Scholar
  25. Harris, H., and Hopkinson, D. A., 1972, Average heterozygosity per locus in man: an estimate based on the incidence of enzyme polymorphism, Ann. Hum. Genet., 36, 9–20.PubMedCrossRefGoogle Scholar
  26. Higgs, D. R., Goodbourn, S. E. Y., Wainscoat, J. S., Clegg, J. B., and Weatherall, D. J., 1981, Highly variable regions of DNA flank the human α-globin genes, Nucl. Acids Res., 9, 4213–4224.PubMedCrossRefGoogle Scholar
  27. Hunt, J. A., Hall, T. J., and Britten, R. J., 1981, Evolutionary distances in Hawaiian Drosophila measured by DNA reassociation, J. Mol. Evol., 17:361–367.PubMedCrossRefGoogle Scholar
  28. Jeffreys, A. J., 1979, DNA sequence variants in the Gγ-, Aγ-, δ-and β-globin genes of man, Cell, 18:1–10.PubMedCrossRefGoogle Scholar
  29. Johnson, S. A., Davidson, E. H., and Britten, R. J., 1984, Insertion of a short repetitive sequence (D88I) in a sea urchin gene: A typical interspersed repeat?, J. Mol. Evol., 20:195–201.PubMedCrossRefGoogle Scholar
  30. Jones, R. N., and Rees, H., 1968, Nuclear DNA variation in Allium, Heredity, 23:591–605.CrossRefGoogle Scholar
  31. Junakovic, N., Caneva, R., and Ballario, P., 1984, Genomic distribution of copia-like elements in laboratory stocks of Drosophila melanogaster, Chromosoma (Berl), 90:378–382.CrossRefGoogle Scholar
  32. Kazazian, H. H., Jr., Chakravarti, A., Orkin, S. H., and Antonarakis, S. E., 1983, DNA polymorphisms in the human β globin gene cluster, in: “Evolution of Genes and Proteins,” M. Nei and R. K. Koehn, eds., Sinauer Associates, Sunderland, Massachusetts, pp. 137–146.Google Scholar
  33. Koveski, I., Preugschat, F., Stuerzl, M., and Smith, M. J., 1984, Actin genes from the sea star Pisaster ochraceus, Biochim. Biophys. Acta, 782:76–86.CrossRefGoogle Scholar
  34. Kreitman, M., 1983, Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster, Nature, 304:412–417.PubMedCrossRefGoogle Scholar
  35. Lee, J. J., Shott, R. J., Rose, S. J., III., Thomas, T. L., Britten, R. J., and Davidson, E. H., 1984, Sea urchin actin gene subtypes: Gene number, linkage and evolution, J. Mol. Biol., 172:149–176.PubMedCrossRefGoogle Scholar
  36. Liebermann, D., Hoffman-Liebermann, B., Weinthal, J., Childs, G., Maxson, R., Mauron, A., Cohen, S., and Kedes, L., 1983, An unusual transposon with long terminal inverted repeats in the sea urchin Strongylocentrotus purpuratus, Nature, 306:342–347.PubMedCrossRefGoogle Scholar
  37. Manning, J. E., Schmid, C. W., and Davidson, N., 1975, Interspersion of repetitive and nonrepetitive DNA sequences in the Drosophila melanogaster genome, Cell, 4:141–155.PubMedCrossRefGoogle Scholar
  38. Maresca, A., and Singer, M. F., 1983, Deca-satellite: A highly polymorphic satellite that joins α-satellite in the African green monkey genome, J. Mol. Biol., 164:493–511.PubMedCrossRefGoogle Scholar
  39. Maresca, A., Singer, M. F., and Lee, T. N. H., 1984, Continuous reorganization Leads to extensive polymorphism in a monkey centromeric satellite, J. Mol. Biol., 179:629–649.PubMedCrossRefGoogle Scholar
  40. Moore, G. P., Costantini, F. D., Posakony, J. W., Davidson, E. H., and Britten, R. J., 1980, Evolutionary conservation of repetitive sequence expression in sea urchin egg RNA’s, Science, 208:1046–1048.PubMedCrossRefGoogle Scholar
  41. Moore, G. P., Pearson, W. R., Davidson, E. H., and Britten, R. J., 1981, Long and short repeats of sea urchin DNA and their evolution, Chromosoma (Berl), 84:19–32.CrossRefGoogle Scholar
  42. Moore, G. P., Scheller, R. H., Davidson, E. H., and Britten, R. J., 1978, Evolutionary change in the repetition frequency of sea urchin DNA sequences, Cell, 15:649–660.PubMedCrossRefGoogle Scholar
  43. Moschonas, N., de Boer, E., and Flavell, R. A., 1982, The DNA sequence of the 5′ flanking region of the human β-globin gene: Evolutionary conservation and polymorphic differences, Nucl. Acids Res., 10:2109–2120.PubMedCrossRefGoogle Scholar
  44. Nagl, W., and Capesius, I., 1976, Molecular and cytological characteristics of nuclear DNA and chromatin for angiosperm systematics: Basic data for Helianthus annuus (Asteraceae), Plant Syst. Evol., 126:221–237.Google Scholar
  45. Nei, M., and Li, W.-H., 1979, Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. USA, 76:5269–5273.PubMedCrossRefGoogle Scholar
  46. Ohta, T., 1980, “Lecture notes in Biomathematics: Evolution and Variation of Multigene Families,” Springer-Verlag, New York.Google Scholar
  47. Okamuro, J. K., and Goldberg, R. B., 1985, Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors, Mol. Gen. Genet., 198:290–298CrossRefGoogle Scholar
  48. Posakony, J. W., Flytzanis, C. N., Britten, R.J., and Davidson, E. H., 1983, Interspersed sequence organization and developmental representation of cloned poly(A) RNAs from sea urchin eggs, J. Mol. Biol., 167:361–389.PubMedCrossRefGoogle Scholar
  49. Price, H. J., Bachmann, K., Chambers, K., and Riggs, J., 1980, Detection of intraspecific variation in nuclear DNA content in Microseris douglasii, Bot. Gaz., 141:195–198.CrossRefGoogle Scholar
  50. Price, H. J., Chambers, K. L., Bachmann, K., and Riggs, J., 1983, Inheritance of 2C nuclear DNA content variation in intraspecific and interspecific hybrids of Microseris (Asteraceae), Am. J. Bot., 70:1133–1138.CrossRefGoogle Scholar
  51. Raina, S. N., and Rees, H., 1983, DNA variation between and within chromosome complements of Vicia species, Heredity, 51:335–346.CrossRefGoogle Scholar
  52. Rivin, C. J., Zimmer, E. A., Cullis, C. A., Walbot, V., Huynh, T., and Davis, R. W., 1983, Evaluation of genomic variability at the nucleic acid level, Plant Mol. Biol. Reporter, 1:9–16.CrossRefGoogle Scholar
  53. Roberts, J. W., Johnson, S. A., Kier, P., Hall, T. J., Davidson, E. H., and Britten, R. J., 1985, Evolutionary conservation of DNA sequences expressed in sea urchin eggs and early embryos, J. Mol. Evol., submitted.Google Scholar
  54. Rotwein, P., Chyn, R., Chirgwin, J., Cordeil, B., Goodman, H. M., and Permutt, M. A., 1981, Polymorphism in the 5′-flanking region of the human insulin gene and its possible relation to type 2 diabetes, Science, 213:1117–1120.PubMedCrossRefGoogle Scholar
  55. Shepherd, N. D., Schwarz-Sommer, Zs., Blumberg Vel, Spalve, J., Gupta, M., Wienand, U., and Saedler, H., 1984, Similarity of the Cinl repetitive family of Zea mays to eukaryotic transposable elements, Nature, 307:185–187.PubMedCrossRefGoogle Scholar
  56. Slightom, J. L., Blechl, A. E., and Smithies, O., 1980, Human fetal Gγ- and Aγ-giobin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes, Cell, 21:627–638.PubMedCrossRefGoogle Scholar
  57. Smith, M. J., Nicholson, R., Stuerzl, M., and Lui, A, 1982, Single copy DNA homology in sea stars, J. Mol. Evol., 18:92–101.Google Scholar
  58. Sober, H. A., 1968, “Handbook of Biochemistry,” Chemical Rubber Co., Cleveland.Google Scholar
  59. Strobel, E., Dunsmuir, P., and Rubin, G. M., 1979, Polymorphisms in the chromosomal locations of elements of tge 413, copia and 297 dispersed repeated gene families in Drosophila, Cell, 17:429–439.PubMedCrossRefGoogle Scholar
  60. van Delden, W. 1982, The alcohol dehydrogenase polymorphism in Drosophila melanogaster: selection at an enzyme locus, Evol. Biol., 15:187–222.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Roy J. Britten
    • 1
  1. 1.Division of BiologyCalifornia Institute of Technology, and Carnegie Institution of WashingtonUSA

Personalised recommendations