Developmental Constraints and Evolutionary Saltations: A Discussion and Critique

  • Jeffrey S. Levinton
Part of the Stadler Genetics Symposia Series book series (SGSS)


Developmental biology has long been a focus for evolutionary theory (von Baer, 1828; Haeckel, 1866; Garstang, 1922; deBeer, 1958; Goldschmidt, 1938; Waddington, 1940; Riedl, 1978; Gould, 1977; Bonner, 1982; Raff and Kaufman, 1983). Time and again, the concepts of constraint and saltation have been (reformulated in developmental terms, but, surely, Goldschmidt’s (1938) “Physiological Genetics” is the classic in this field. A major group of constraints are non-random channelizations of evolutionary direction due to limitations imposed by epigenetic interaction in the developing organism. In the context of development, Saltations are rapid evolutionary fixations of phenotypic discontinuities; many might be governed by developmental constraints which do not permit continuity of form in polymorphic populations. It is the purpose of this essay to discuss these two concepts critically.


Genetic Correlation Developmental Program Brain Size Allometric Relationship Humpback Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberch, P., 1980, Ontogenesis and morphological diversification, Amer. Zool., 20:653–667.Google Scholar
  2. Alberch, P., 1981, Convergence and parallelism in foot morphology in the Neotropical salamander genus Bolitoglossa. I. Evolution, 35:84–100.CrossRefGoogle Scholar
  3. Alberch, P., 1982, Developmental constraints in evolutionary processes, J.T. Bonner, ed., in: Development and Evolution, Springer-Verlag, Berlin, pp. 313–332.CrossRefGoogle Scholar
  4. Alberch, P., 1983, Morphological variation in the Neotropical salamander genus, Bolitoglossa, Evolution, 37:90Google Scholar
  5. Alberch, P., and Gale, E., 1983, Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction, J. Embryol. Exp. Morph. 76:177–197.PubMedGoogle Scholar
  6. Alberch, P., Gould, S.J., Oster, G.F., Wake, D.B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology, 5:296-Google Scholar
  7. Allin, E.F., 1975, Evolution of the mammalian middle ear, J. Morph., 147:403–438.PubMedCrossRefGoogle Scholar
  8. Andrews, R.C., 1921, A remarkable case of external hind limbs in a humpback whale, Am. Mus. Novitates 9:1–16.Google Scholar
  9. Atchley, W.R., Riska, B., Kohn, L.A.P., Plummer, A.A., and Rutledge, J.J., 1984, A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: data from mice, Evolution, 38:1165–1179.CrossRefGoogle Scholar
  10. Atchley, W.R., and Rutledge, J.J., 1980, Genetic components of size and shape. I. Dynamic components of phenotypic variability and covariability during ontogeny in the laboratory rat, Evolution, 34:1161–1173.CrossRefGoogle Scholar
  11. Baer K.E. v, 1828, Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion. Konisgberg: Borntrager.Google Scholar
  12. Bakker, R.T., 1974, Experimental and fossil evidence for the evolution of tetrapod bioenergetics, in: “Perspectives in Biophysical Ecology,” D. Gates and R. Schmerl, eds., Springer- Verlag, New York, pp. 365–399.Google Scholar
  13. Bakker, R.T., 1977, Tetrapod mass extinctions — a model of the regulation of speciation rates and immigration by cycles of topographic diversity, in: “Patterns of Evolution as Illustrated by the Fossil Record,” A. Hallam, ed., Elsevier Scientific, Amsterdam, pp. 439–468.CrossRefGoogle Scholar
  14. Benton, M.J., 1983a, Large-scale replacements in the history of life, Nature, 302:16–17.CrossRefGoogle Scholar
  15. Benton, M.J., 1983b, Dinosaur success in the Triassic: a noncompetitive ecological model, Q. Rev. Biol., 58:29–55.CrossRefGoogle Scholar
  16. Bonner, J.T., 1982, “Evolution and Development,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  17. Bowen, S.T., Hanson, J., Dowling, P., and Poon, M.-C., 1966, The genetics of Artemia salina VI. Summary of mutations, Biol. Bull, 131:230–250.CrossRefGoogle Scholar
  18. Cherry, L.M., Case, S.M., and Wilson, A.C., 1978, Frog perspective on the morphological difference between humans and chimpanzees, Science, 200: 209–211.CrossRefGoogle Scholar
  19. Cheverud, J.M., Rutledge, J.J., and Atchley, W.R., 1983, Quantitative genetics of development: genetic correlations among age-specific trait values and the evolution of ontogeny, Evolution, 37:895–905.CrossRefGoogle Scholar
  20. Clutton-Brock, T.H., Albon, S.D., and Harvey, P.H., 1980, Antlers, body size and breeding group size in the Cervidae, Nature, 565–567.Google Scholar
  21. Clutton-Brock, T.H., and Harvey, P.H., 1979, Comparison and adaptation, Proc. Roy. Soc. Lond., B205:547–565.CrossRefGoogle Scholar
  22. Cock, A.G., 1969, Genetical studies on growth and form in the fowl, Genet. Res., 14:237–247.PubMedCrossRefGoogle Scholar
  23. Count, E.W., 1947, Brain and body weight in man: their antecedents in growth and evolution, Ann. N.Y. Acad. Sci., 46:993–1122.CrossRefGoogle Scholar
  24. Crompton, A.W., 1963, On the lower jaw of Diarthrognathus and the origin of the mammalian lower jaw, Proc. Zool. Soc. London, 140:697–753.CrossRefGoogle Scholar
  25. Crompton, A.W., and Jenkins, F.A., 1968, Molar occlusion in Late Triassic mammals, Biol. Rev., 43:427–458.PubMedCrossRefGoogle Scholar
  26. Crompton, A.W., and Jenkins, F.A., 1973, Mammals from reptiles: a review of mammalian origins, Ann. Rev. Earth Planet. Sci., 1:131–153.CrossRefGoogle Scholar
  27. Crompton, A.W., and Jenkins, F.A., 1979, Origin of mammals, in: “Mesozoic Mammals,” Lillegraven, J.A., Kielan-Jaworska, A., and Clemens, W.A., eds., Univ. of California Press, Berkeley, pp.Google Scholar
  28. Dahl, E., 1959, The ontogeny and comparative anatomy of some protocerebral sense organs in notostracan Phyllopods, Quart. J. Micr. Sci., 100:445–462.Google Scholar
  29. Davenport, R., 1979, “An Outline of Animal Development,” Addison- Wesley, Reading.Google Scholar
  30. DeBeer, G., 1958, “Embryos and Ancestors,” 3rd edition, Clarendon Press, Oxford.Google Scholar
  31. DelPino, E. M., and Elinson, R.P., 1983, A novel developmental pattern for frogs: gastrulation produces an embryonic disk, Nature, 306:589–591.CrossRefGoogle Scholar
  32. Dobzhansky, T., 1951, “Genetics and the Origin of Species,” 3rd. ed. Columbia Univ. Press, New York.Google Scholar
  33. Dobzhansky, T., 1970, “Genetics of the Evolutionary Process,” Columbia Univ. Press, New York.Google Scholar
  34. Frazzetta, T.H., 1969, Adaptive problems and possibilities in the temporal fenestration of tetrapod skulls, J. Morph., 125:145–158.CrossRefGoogle Scholar
  35. Frazzetta, T.H., 1970, From hopeful monsters to Bolyerine snakes, Am. Nat., 104:55–70.CrossRefGoogle Scholar
  36. Frazzetta, T.H., 1975, “Complex Adaptations in Evolving Populations,” Sinauer, Sunderland, MA.Google Scholar
  37. Garcia-Bellido, A., 1975, Genetic controll of wing disc development in “Drosophila”, in: “Cell Patterning,” CIBA Foundation Symp. 29, pp. 161–182.Google Scholar
  38. Garn, S.M., and Lewis, A.B., 1963, Third molar polymorphism and its significance to dental genetics, J. Dent. Res., 42 suppl.: 1 334–1363.Google Scholar
  39. Garstang, W., 1922, The theory of recapitulation. A critical restatement of the biogenetic law, J. Linn. Soc. London, Zoology 35:81–101.CrossRefGoogle Scholar
  40. Gingerich, P.D., 1976, Paleontology and phylogeny: patterns of evolution at the species level in Early Tertiary mammals, Amer. J. Sci., 276:1–28.CrossRefGoogle Scholar
  41. Gingerich, P.D., Wells, N.A., Russell, D.E., and Ibrahim Shah, S.M., 1983, Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan, Science, 220:403–406.PubMedCrossRefGoogle Scholar
  42. Goldschmidt, R., 1938, “Physiological Genetics,” McGraw-Hill, New York.Google Scholar
  43. Goldschmidt, R., 1940, “The Material Basis of Evolution,” Yale Univ. Press, New Haven.Google Scholar
  44. Goldschmidt, R.B., 1945, Mimetic polymorphism, a controversial chapter of Darwinism, Quart. Rev. Biol., 20:147–164, 205–330.CrossRefGoogle Scholar
  45. Gould, S.J., 1974, The evolutionary significance of ‘bizarre’ structures: antler size and skull size in the ‘Irish Elk’, Megalocerus giganteus, Evolution, 28:191–220:CrossRefGoogle Scholar
  46. Gould, S.J., 1975, Allometry in primates with an emphasis on scaling and the evolution of the brain, Contr. Primatol., 5:244–292.Google Scholar
  47. Gould, S.J., 1977, “Ontogeny and Phylogeny,” Harvard Univ. Press, Cambridge, MA.Google Scholar
  48. Gould, S.J., 1980, Is a new and general theory of evolution emerging? Paleobiology, 6:119–130.Google Scholar
  49. Gould, S.J., 1982, Change in developmental timing as a mechanism in macroevolution, in: “Development and Evolution,” Bonner, J.T., ed., Springer-Verlag, Berlin, pp. 333–346.CrossRefGoogle Scholar
  50. Gould, S.J., 1983, Irrelevance, submission, and partnership: the changing role of palaeontology in ‘Darwin’s three centennials and a modest proposal for macroevolution. in: “Evolution From Molecules to Men,” Bendall, D.S., ed., Cambridge Univ. Press, Cambridge, pp. 347–366.Google Scholar
  51. Green, E.L., 1962, Quantitative genetics of skeletal variations in the mouse. II. Crosses between four inbred strains (C3H, DBA, C57BL, BALB/c), Genetics, 47:1085–1096.PubMedGoogle Scholar
  52. Grewal, M.A., 1962, The development of an inherited tooth defect in the mouse, J. Embryol. Exp. Morph., 10:202–211.Google Scholar
  53. Gruneberg, H., 1965, Genes and genotypes affecting the teeth of the mouse, J. Embryol. Exp. Morph., 14:137–159.PubMedGoogle Scholar
  54. Hadorn, E., 1961, “Developmental Genetics and Lethal Factors,” (transl., from German) Methuen & Co, London.Google Scholar
  55. Haidane, J.B.S., 1932, The time of action of genes, and its bearing on some evolutionary problems, Am. Nat., 66:5–24.CrossRefGoogle Scholar
  56. Haeckel, E., 1866, “Generelle Morphologie der Organizmen,” 2 vols., Reimer, Berlin.CrossRefGoogle Scholar
  57. Hampe, A., 1959, Contribution a l’etude du developement et de la regulation des deficiencies et des excédents dans la patte de l’embryon de poulet, Arch. Anat. Microscop. Morphol. Exp., 48:347–478.Google Scholar
  58. Harcourt, A.H., Harvey, P.H., Larson, S.G., and Short, R.V., 1981 Testis weight, body weight and breeding system in primates, Nature, 293:55–57.PubMedCrossRefGoogle Scholar
  59. Harvey, P.H. and Bennett, P.M., 1983, Brain size, energetics, ecology and life history patterns, Nature, 306:314–315.PubMedCrossRefGoogle Scholar
  60. Hersh, A.H., 1934, Evolutionary relative growth in the Titanotheres, Am. Nat., 68:537–561.CrossRefGoogle Scholar
  61. Hinchcliffe, J.R. and Gumpel-Pinot, M., 1981, Control of maintenance and anteroposterior skeletal differentiation of the anterior mesenchyme of the chick wing bud by its posterior margin (the ZPA), J. Embryol. Exp. Morph., 62:63–82.Google Scholar
  62. Hopson, J.A., 1966, The origin of the mammalian middle ear, Am. Zool., 437–450.Google Scholar
  63. Huxley, J.H., 1931, The relative size of antlers in deer, Zool. Soc. Lond.19–864.Google Scholar
  64. Huxley, J.H., 1932, “Problems of Relative Growth,” MacVeagh, London.Google Scholar
  65. Huxley, J.H., 1960, The emergence of Darwinism, in: “Evolution After Darwin,” v. 1., S. Tax, ed., Univ. of Chicago Press, Chicago, pp. 1–21.Google Scholar
  66. Jaanusson, V., 1981, Functional thresholds in evolutionary progress, Lethaia, 14:251–260.CrossRefGoogle Scholar
  67. Jaffe, L.F., Stern, C.D., 1979, Strong electrical currents leave the primitive streak of chick embryos, Science, 206:569–571.PubMedCrossRefGoogle Scholar
  68. Jenkins, F.A. Jr., Crompton, A.W., and Downs, W.R., 1983, Mesozoic mammals from Arizona: new evidence on mammalian evolution, Science, 222:1233–1235.PubMedCrossRefGoogle Scholar
  69. Kemp, T.S., 1982, “Mammal-like Reptiles and the Origin of Mammals,” Academic Press, London.Google Scholar
  70. Kniprath, E., 1981, Ontogeny of the molluscan shell field: a review, Zoologica Scripta, 10:61–79.CrossRefGoogle Scholar
  71. Kollar, E.J. and Fisher, C., 1980, Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis, Science, 207:993–995.PubMedCrossRefGoogle Scholar
  72. Kuren, B., 1963, Return of a lost structure in the evolution of felid dentition, Soc. Sci. Fenn., 26:4–12.Google Scholar
  73. Lande, R., 1978, Evolutionary mechanisms of limb loss in tetrapods, Evolution, 32:73–92.CrossRefGoogle Scholar
  74. Lande, R., 1979, Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry, Evolution, 33:402–416.CrossRefGoogle Scholar
  75. Levinton, J.S., 1983, Stasis in progress: the empirical basis of macroevolution, Annu. Rev. Ecol. Syst., 14:103–137.CrossRefGoogle Scholar
  76. Lewis, E.B., 1978, A gene complex controlling gene segmentation in “Drosophila”, Nature, 276:565–570.PubMedCrossRefGoogle Scholar
  77. Lewontin, R.C., 1978, Adaptation, Scientif. Amer., 239(3):156–169.Google Scholar
  78. Lillie, F.R., 1898, Adaptation in cleavage, Biological Lectures of the Marine Biological Laboratory, Woods Hole. Ginn and Co., Boston pp. 43–67.Google Scholar
  79. Lovtrup, S., 1974, “Epigenetics,” John Wiley and Sons, New York.Google Scholar
  80. Maderson, P.F.A., 1975, Embryonic tissue interactions as the basis for morphological change in evolution, Amer. Zool., 15:315–327.Google Scholar
  81. Maderson, P.F.A., Alberch, P., Goodwin, B.C., Gould, S.J., Hoffman, A., Murray, J.D., Raup, D.M., de Ricqles, A., Seilacher, A., Wagner, G.P. and Wake, D.B., 1982. The role of development in macroevolutionary change, in: “Evolution and Development,” Bonner, J.T., ed., Springer-Verlag, Berlin, pp. 279–312.Google Scholar
  82. Marsh, O.C., 1892, Recent polydactyle horses, Am. J. Sci., 43:339–355.Google Scholar
  83. Martin, R.D., 1981, Relative brain size and basal metabolic rate in terrestrial vertebrates, Nature, 293:57–60.PubMedCrossRefGoogle Scholar
  84. Maynard Smith, J., 1960, Continuous, quantized and modal variation, Proc. Roy. Soc. London, l52B:397–409.Google Scholar
  85. Mayr, E., 1963, “Animal Species and Evolution,” Belknap Press, Harvard Univ. Press, Cambridge, MA.Google Scholar
  86. McNab, B.K., 1978, The evolution of endothermy in the phylogeny of mammals, Am. Nat., 112:1–21.CrossRefGoogle Scholar
  87. Murray, J.D., and Oster, G.F., 1984, Generation of biological pattern and form, IMA J. of Mathematics Applied in Medicine and Biology, 1:51–75.CrossRefGoogle Scholar
  88. North, G., 1984, How to make a fruitfly, Nature, 311:214–216.PubMedCrossRefGoogle Scholar
  89. Nuccitelli, R. 1983. Transcellular ion currents: signlas and effectors of cell polarity, in: “Modern Cell Biology,” v. 2, J.R. Mcintosh, ed., Alan R. Liss, New York, pp. 451–481.Google Scholar
  90. Odell, G.M., Oster, G., Alberch, P., and Burnside, B., 1981, The mechanical basis of morphogenesis. I. Epithelial folding and invagination, Devl. Biol., 85:446–462.CrossRefGoogle Scholar
  91. Ohno, S., 1973, Ancient linkage groups and frozen accidents, Nature, 244:259–262.CrossRefGoogle Scholar
  92. Osborn, H.F., 1929, The Titanotheres of ancient Wyoming, Dakota and Nebraska, U.S. Dept. Int., Geol. Survey., Monogr. 55, 2 vols., Washington, D.C.CrossRefGoogle Scholar
  93. Oster, G.F., Murray, J.D., and Harris, A.K., 1983, Mechanic aspects of mesenchymal morphogenesis, J. Embryol. Exp. Morph., 78:83–125.PubMedGoogle Scholar
  94. Parrington, F.R., 1971, On the upper Triassic mammals, Phil. Trans. Roy. Soc. Lond., 261B:231–272.Google Scholar
  95. Punnett, R.C., 1915, “Mimicry in Butterflies,” Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  96. Rachootin, S., and Thomson, K.S., 1981, Epigenetics, paleontology, and evolution, in: “Evolution Today,” Proc. Intl. Congr. Syst. Evol. Biol., Scudder, G.G.E., and Raveal, J.L., eds., Hunt Inst. for Botanical Documentation, Carnegie Mellon Univ., Pittsburgh, pp. 181–194.Google Scholar
  97. Radinsky, L., 1978, Evolution of brain size in carnivores and ungulates, Am. Nat., 112:815–831.CrossRefGoogle Scholar
  98. Radinsky, L.B., 1982, Evolution of skull shape in carnivores. 3. The origin and early radiation of the modern carnivore families, Paleobiology, 8:177–195.Google Scholar
  99. Raff R.A. and Kaufman, T.C., 1983, “Embryos, Genes, and Evolution,” MacMillan Publ. Co., New York.Google Scholar
  100. Riddle, D.L., Swanson, M.M., and Albert, P.S., 1981, Interacting genes in a nematode dauer larva formation, Nature, 290:668–671.PubMedCrossRefGoogle Scholar
  101. Riedl, R., 1978, “Order in Living Organisms,” (transl. from German by R.P.S. Jefferies), John Wiley and Sons, Chichester.Google Scholar
  102. Riska, B. and Atchley, W.R., 1984, Genetics of growth predict patterns of brain-size evolution, unpublished.Google Scholar
  103. Robertson, F.W., 1962, Changing the relative size of body parts of Drosophila by selection, Genet. Res. Cambr., 3:169–180.CrossRefGoogle Scholar
  104. Rose, K.D., and Bown, T.M., 1984, Gradual phyletic evolution at the generic level in early Eocene omomyid primates, Nature, 309:250–252.CrossRefGoogle Scholar
  105. Rosenzweig, M.L., 1966, Community structure in sympatric Carnivora, J. Mammal., 47:602–612.CrossRefGoogle Scholar
  106. Schinde wolf, O.H., 1936, “Palaeontologie, Entwicklungslehre un Genetik,” Borntrager, Berlin, 108 pp.Google Scholar
  107. Schindewolf, O.H., 1950, “Grundfragen der Palaontologie,” Schweizerbart, Stuttgart.Google Scholar
  108. Schmalhausen, I.I, 1949, “Factors of Evolution, The Theory of Stabilizing Selection,” Blakiston, Philadelphia.Google Scholar
  109. Shea, B.T., 1983, Paedomorphosis and neoteny in the Pygmy chimpanzee, Science, 222:521–522.PubMedCrossRefGoogle Scholar
  110. Simpson, G.G., 1960, Diagnosis of the classes Reptilia and Mammalia, Evolution, 14:388–392.CrossRefGoogle Scholar
  111. Sinnott, E.W. and Dunn, L.C., 1935, The effect of genes on the development of size and form, Biol. Rev. Cambr., 10:123–151.CrossRefGoogle Scholar
  112. Spemann, H., 1938, “Embryonic Development and Induction,” Hafner, New York (reprinted 1967).Google Scholar
  113. Stebbins, G.L., 1969, “The Basis of Progressive Evolution,” Univ. of North Carolina Press, Chapel Hill.Google Scholar
  114. Stebbins, G.L., 1974, Adaptive shifts and evolutionary novelty: a compositionist approach, in: “Studies in the Philosophy of Biology,” Ayala, F.J. and Dobzhansky, T., eds., Univ. California Press, Berkeley, pp. 285–306.Google Scholar
  115. Stebbins, G.L., 1984, Mosaic evolution: an integrating principle for the Modern Synthesis, unpublished manuscript.Google Scholar
  116. Stock, G.B. and Bryant, S.V., 1981, Studies of digit regeneration and their implications for theories of development and evolution of vertebrate limbs, J. Exp. Zool., 216:423–433.PubMedCrossRefGoogle Scholar
  117. Summerbell, D., 1981, The control of growth and the development of pattern across the anteroposterior axis of the chick limb bud, J. Embryol. Exp. Morph., 63:161–180.PubMedGoogle Scholar
  118. Tiffney, B.H., 1981, Diversity and major events in the evolution of land plants, in: “Paleobotany, Paleoecology, and Evolution,” Niklas, K.V., ed., Praeger Publ., New York, pp. 193–230.Google Scholar
  119. Turing, A.M., 1952, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond., 237B:37–72.Google Scholar
  120. Waddington, C.H., 1940, “Organizers and Genes,” Cambridge Univ. Press, Cambridge.Google Scholar
  121. Waddington, C.H., 1942, Canalization of development and the inheritance of acquired characters, Nature, 150:563–565.CrossRefGoogle Scholar
  122. Williams, E.E., 1950, Variation and selection in the cervical central articulations of living turtles, Bull Amer. Mus. Nat. Hist., 94:509–561.Google Scholar
  123. Wilson, T.G., 1981a Expression of phenotypes in a temperature- sensitive allele of the apterous mutation in Drosophila melanogaster, Devl. Biol., 85:425–433.CrossRefGoogle Scholar
  124. Wilson, T.G., 1981b, A mosaic analysis of the Apterous mutation in Drosophila melanogaster, Devl. Biol., 85:434–435.CrossRefGoogle Scholar
  125. Wolpert, L., 1969, Positional information and the spatial pattern of cellular differentiation, J. Theoret. Biol., 25:1–47.CrossRefGoogle Scholar
  126. Wright, S., 1934, An analysis of variability in number of digits in an inbred strain of guinea pigs, Genetics, 19:506–551.PubMedGoogle Scholar
  127. Wright, S., 1935a, Polydactylous guinea pigs, J.Hered., 25:359–362.Google Scholar
  128. Wright, S., 1935b, A mutation of the Guinea pig, tending to restore the pentadactyl foot when heterozygous, producing a monstrosity when homozygous, Genetics, 20:84–107.PubMedGoogle Scholar
  129. Yanofsky, C.T., Platt, T., Crawford, L.P., Nichols, B.P., Christie, G.E., Horowitz, H., van Cleemput, M., and Wu, A.M., 1981, The complete nucleotide sequence of the tryptophan operon of Escherichia coli, Nucleic Acids Res., 9:6647–6668.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Jeffrey S. Levinton
    • 1
  1. 1.Department of Ecology and EvolutionState University of New YorkStony BrookUSA

Personalised recommendations