Structure and Regulated Transcription of DIRS-1, A Novel Dictyostelium Discoideum Transposable Element

  • Joe Cappello
  • Stephen M. Cohen
  • Karl Handelsman
  • Harvey F. Lodish
Part of the Stadler Genetics Symposia Series book series (SGSS)


Transposons and transposon- and retrovirus-like DNA segments form a major part of the repetitive DNA in many eukaryotes. They are a cause of many “spontaneous” mutations in Drosophila and other organisms, and many catalyze the rearrangements of large segments of DNA that have occurred during evolution (Spradling and Rubin, 1981; Kleckner, 1981; Flavell et al., 1981; Roeder and Fink 1983; Fedoroff, 1983). In the course of cloning segments of Dictvostelium discoideum genomic DNA that are expressed preferentially during early differentiation, we isolated the DIRS-1 transposon (Chung et al., 1983; Zuker and Lodish, 1981). DIRS-1 is unusual in that its transcription is induced either by heat shock or by the high cell density that occurs during the early stages of differentiation. It is also novel in that its structure is unlike any transposon in prokaryotes or eukaryotes that has been identified to date. DIRS-1 has been independently isolated by Rosen et al. (1983) who call it Tdd-1.


Heat Shock Transposable Element Terminal Repeat Dictyostelium Discoideum Inverted Terminal Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cappello, J., Cohen, S. M., and Lodish, H. F., 1984a, Dictyostelium transposable element DIRS-1 preferentially inserts into DIRS-1 sequences, Mol. Cell. Biol., 4:2207–2213.PubMedGoogle Scholar
  2. Cappello, J., Zuker, C., and Lodish, H. F. 1984b, Repetitive Dictyostelium heat-shock promotor functions in Saccharomyces cerevisiae, Mol. Cell. Biol., 4:591–598.PubMedGoogle Scholar
  3. Chung, S., Zuker, C., and Lodish, H. F., 1983, A repetitive and apparently transposable DNA sequence in Dictyostelium discoideum associated with developmentally regulated RNAs, Nucl. Acids Res. 11:4835–4852.PubMedCrossRefGoogle Scholar
  4. Cohen, S. M., Cappello, J., and Lodish, H. F., 1984, Transcription of Dictyostelium discoideum transposable element DIRS-1, Mol. Cell. Biol., 4:2332–2340.PubMedGoogle Scholar
  5. Del Rey, F. J., Donahue, T. F., and Fink, G. R., 1982, Sigma, a repetitive element found adjacent to tRNA genes of yeast, Proc. Nal. Acad. Sci. USA., 79:4138–4142CrossRefGoogle Scholar
  6. Eibel, H., Gafner, J., Stotz, A., and Philippsen, P., 1980, Characterization of the yeast mobile element Tyl, Cold Spring Harbor Symp. Quant. Biol., 45:609-CrossRefGoogle Scholar
  7. Falkenthal, S., Graham, M. L., Korn, E. L., and Lengyel, J. A., 1981, Transcription, processing and turnover from the Drosophila mobile genetic element copia, Devel. Biol., 92:294-CrossRefGoogle Scholar
  8. Fedoroff, N. V. 1983, Controlling elements in cell lineages, in: “Mobile Genetic Elements,” J. A. Shapiro, ed., Academic Press, New York, pp. 1–57.Google Scholar
  9. Flanell, R. B., O’Dell, M., and Hutchinson, J., 1981, Nucleotide sequence organization in plant chromosomes and evidence for sequence translocation during evolution, Cold Spring Harbor Svmp. Quant. Biol., 45:501-CrossRefGoogle Scholar
  10. Kimmel, A. R., and Firtel, R. A., 1983, Sequence organization in Dictyostelium: unique structure at the 5′ ends of protein coding genes, Nucl. Acids Res., 11:541–552.PubMedCrossRefGoogle Scholar
  11. Kleckner, N., 1981, Transposable elements in prokaryotes, Annu. Rev. Genet.. 15:341-PubMedCrossRefGoogle Scholar
  12. Majors, J. E., Swanstrom, R., DeLorre, W. J., Payne, G. S., Hughes, S. H., Ortiz, S., Quintrell, N., Bishop, J. M., and Varmus, H. E., 1980, DNA intermediates in the replication of retroviruses are structurally (and perhaps functionally) related to transposable elements, Cold Spring Harbor Symp. Quant. Biol., 45:731-CrossRefGoogle Scholar
  13. Mangiarotti, G., Zuker, C., Chisholm, R., and Lodish, H. F., 1983, Different mRNAs have different nuclear transit times in Dictyostelium discoideum aggregates, Mol. Cell. Biol., 3:1151–1517.Google Scholar
  14. Mangiarotti, G., Lefebvre, P., and Lodish, H. F., 1982, Differences in the stability of development tally regulated mRNAs in aggregated and disaggregated Dictvostelium discoideum cells, Devel. Biol., 89:82–91.CrossRefGoogle Scholar
  15. Murphy, E., and Lofdahl, S., 1984, Transposition of Tn554 does not generate a target duplication, Nature (London), 307:292–294.CrossRefGoogle Scholar
  16. O’Hare, K., and Rubin, G. M., 1983, Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanocraster genome, Cell, 34:25–35.PubMedCrossRefGoogle Scholar
  17. Pelham, H. R. B., 1982, A regulatory upstream promoter element in the Drosophila HSP 70 heat shock gene, Cell. 30:517–528.PubMedCrossRefGoogle Scholar
  18. Pelham, H.R. B., and Bienz, M., 1982, A synthetic heat-shock promoter confers heat inducibility on the herpes simplex thymidine kinase gene, EMBO J., 1:1473-PubMedGoogle Scholar
  19. Potter, S. S., 1982, DNA sequence of a foldback transposabale element in Drosophila, Nature (London), 297:201–204.CrossRefGoogle Scholar
  20. Roeder, G. S., and Fink, G. R., 1983, Transposable elements in yeast, in: “Mobile Genetic Elements,” J. A. Shapiro, ed., Academic Press, New York, pp. 250–326.Google Scholar
  21. Rosen, E., Sivertsen, A., and Firtel, R. A., 1983, An unusual transposon encoding heat shock inducible and developmentally regulated transcripts in Dictyostelium, Cell, 35:243-PubMedCrossRefGoogle Scholar
  22. Rosenzweig, B., Liao, L. W., and Hirsh, D., 1983, Target sequences for the C. elegans transposable element Tcl, Nucl. Acids Res., 11:7137–7140.PubMedCrossRefGoogle Scholar
  23. Spradling, A. C., and Rubin, G. M., 1981, Drosophila genome organization: conserved and dynamic aspects, Annu. Rev. Genet., 15:219-PubMedCrossRefGoogle Scholar
  24. Stanfield, S. W., and Lengyel, J. A., 1980, Small circular deoxyribonucleic acid of Drosophila melanogaster: homologous transcripts in the nucleus and cytoplasm, Biochemistry, 19:3873-.PubMedCrossRefGoogle Scholar
  25. Yvan, R., 1981, Structure and mechanism of multifunctional restriction endonucleases, Annu. Rev. Biochem.. 50:285-CrossRefGoogle Scholar
  26. Zuker, C., 1983, Repetitive developmentally regulated genes in Dictyostelium, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  27. Zuker, C., Cappello, J., Chisholm, R. L., and Lodish, H. F., 1983, A repetitive Dictyostelium gene family that is induced during differentiation and by heat shock, Cell, 34:997–1005.PubMedCrossRefGoogle Scholar
  28. Zuker, C., Cappello, J., Lodish, H. F., George, P., and Chung, S., 1984, Dictyostelium transposable element DIRS-1 has 350-base-pair inverted terminal repeats that contain a heat shock promoter, Proc. Natl. Acad. Sci. USA, 81:2660–2664.PubMedCrossRefGoogle Scholar
  29. Zuker, C., and Lodish, H. F., 1981, Repetitive sequences cotranscribed with developmentally regulated Dictyostelium discoideum mRNAs, Proc. Natl. Acad. Sci. USA, 78:5386–5390.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Joe Cappello
    • 1
    • 2
  • Stephen M. Cohen
    • 1
    • 2
  • Karl Handelsman
    • 1
    • 2
  • Harvey F. Lodish
    • 1
    • 2
  1. 1.Whitehead Institute for Biomedical ResearchNine Cambridge CenterCambridgeUSA
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations