Cell Lineage and Cell Interactions in the Determination of Developmental Cell Fates

  • Marty Shankland
  • Gunther S. Stent
Part of the Stadler Genetics Symposia Series book series (SGSS)


A central problem of developmental biology is to understand the sequence of cellular and molecular events which transforms a fertilized egg into a mature organism composed of a precise spatial array of distinct cell types. A significant consideration in addressing this problem is the fact that each of the many cells in the mature organism is descended from the egg via a lengthy sequence of progenitor cell divisions. In order to reduce the number of variables associated with the problem, many embryologists have concentrated on invertebrates such as nematodes, annelids, molluscs and tunicates in which the sequence of embryonic cell divisions is highly stereotyped. Because of this regularity it is possible to portray the development of the entire organism by the genealogical relationship between the composite cells, and to identify individual cells on the basis of their lineage (Zur Strassen, 1896; Conklin, 1905; Schleip, 1936).


Blast Cell Pattern Element Genealogical Relationship Developmental Fate Determine Cell Fate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.T., 1973, “Embryology and phylogeny in Annelids and Arthropods,” Pergamon Press, Oxford.Google Scholar
  2. Blair, S.S., 1982, Interactions between mesoderm and ectoderm in segment formation in the embryo of a glossiphoniid leech, Dev. Biol., 89:389–396.PubMedCrossRefGoogle Scholar
  3. Blair, S.S., 1983, Blastomere ablation and the developmental origin of identified monoamine-containing neurons in the leech, Dev. Biol., 95:65–72.PubMedCrossRefGoogle Scholar
  4. Blair, S.S. and Weisblat, D.A., 1984, Cell interactions in the developing epidermis of the leech Helobdella triserialis, Dev. Biol., 101:318–325.PubMedCrossRefGoogle Scholar
  5. Conklin, E.G., 1905, The organization and cell lineage of the ascidian egg, J. Acad. Nat. Sci. Philadelphia, 13:1–119.Google Scholar
  6. Crick, F.H.C., and Lawrence, P.A., 1975, Compartments and polyclones in insect development, Science, 189:340–347.PubMedCrossRefGoogle Scholar
  7. Fernandez, J., 1980, Embryonic development of the glossiphoniid leech Theromyzon rude: characterization of developmental stages, Dev. Biol., 76:245–262.PubMedCrossRefGoogle Scholar
  8. Garcia-Bellido, A., and Merriam, J.R., 1969, Cell lineage of the imaginai discs in Drosophila gynandromorphs, J. Exp. Zool., 170: 61–67.PubMedCrossRefGoogle Scholar
  9. Gimlich, R.L., and Braun, J., 1985, Improved fluorescent compounds for tracing cell lineage, Dev. Biol., in press.Google Scholar
  10. Goodman, C.S., Bastiani, M.J., Doe, C.Q., du Lac, S., Helfand, S.L., Kuwada, J.Y., and Thomas, J.B., 1984, Cell recognition during neuronal development, Science, 225:1271–1279.PubMedCrossRefGoogle Scholar
  11. Illmensee, K., and Mahowald, A.P., 1974, Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg, Proc. Nat. Acad. Sci. USA, 73: 549–553.CrossRefGoogle Scholar
  12. Jacobson, M., 1981, Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo, J. Neurosci., 1:923–927.PubMedGoogle Scholar
  13. Kimble, J., 1981, Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans, Dev. Biol., 87:286–300.PubMedCrossRefGoogle Scholar
  14. Kramer, A.P., and Weisblat, D.A., 1985, Developmental neural kinship groups in the leech, J. Neurosci., in press.Google Scholar
  15. Nicholls, J.G. and Baylor, D.A., 1968, Specific modalities and receptive fields in CNS of the leech, J. Neurophysiol., 31:740–756.PubMedGoogle Scholar
  16. Nicholls, J.G. and Purves, D., 1970, Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech, J. Physiol., 209:647–667.PubMedGoogle Scholar
  17. Schleip, W., 1936, Ontogenie der Hirudineen, in: “Klassen und Ordnungen des Tierreichs,” Part 2, H.G. Bronn, ed., Akad. Verlagsgesellschaft, Leipzig, pp. 1–121.Google Scholar
  18. Shankland, M., 1986, Positional interaction of embryonic founder cells during the development of the leech nervous system, Current Topics in Dev. Biol., in press.Google Scholar
  19. Shankland, M. and Weisblat, D.A., 1984, Stepwise commitment of blast cell fates during the positional specification of the O and P cell lines in the leech embryo, Dev. Biol., 106:326–342.PubMedCrossRefGoogle Scholar
  20. Stent, G.S., Weisblat, D.A., Blair, S.S., and Zackson, S.L., 1982, Cell lineage in the development of the leech nervous system, in: “Neuronal Development,” N.C. Spitzer, ed., Plenum Press, New York, pp. 1–44.CrossRefGoogle Scholar
  21. Sternberg, P.W. and Horvitz, H.R., 1981, Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by the modification of cell lineage, Dev. Biol., 88: 147–166.PubMedCrossRefGoogle Scholar
  22. Sternberg, P.W. and Horvitz, H.R., 1982, Postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus: description and comparison with those of Caenorhabditis elegans, Dev. Biol., 93:181–205.PubMedCrossRefGoogle Scholar
  23. Stuart, D.K., Glover, J.C., Blair, S.S., and Weisblat, D.A., 1983, Development of leech serotonin neurons examined with serotonin antibody, cell lineage tracer and cell killing, Soc. Neurosci. Abstr., 9:605.Google Scholar
  24. Sulston, J.E., and Horvitz, H.R., 1977, Postembryonic cell lineages of the nematode Caenorhabditis elegans, Dev. Biol., 56:110–156.PubMedCrossRefGoogle Scholar
  25. Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol., 100:64–119.PubMedCrossRefGoogle Scholar
  26. Sulston, J.E., and White, J.G., 1980, Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans, Dev. Biol., 78:577–597.PubMedCrossRefGoogle Scholar
  27. Taghert, P.H., Doe, C.Q. and Goodman, C.S., 1984, Cell determination and regulation during development of neuroblasts and neurons in grasshopper embryos, Nature, 307:163–165.PubMedCrossRefGoogle Scholar
  28. Weisblat, D.A. and Blair, S.S., 1984, Developmental indeterminacy in embryos of the leech Helobdella triserialis, Dev. Biol., 101: 326–335.PubMedCrossRefGoogle Scholar
  29. Weisblat, D.A., Harper, G., Stent, G.S. and Sawyer, R.T., 1980a, Embryonic cell lineage in the nervous system of the glossi-phoniid leech Helobdella triserialis, Dev. Biol., 76:58–78.PubMedCrossRefGoogle Scholar
  30. Weisblat, D.A., Kim, S.Y. and Stent, G.S., 1984, Embryonic origin of cells in the leech Helobdella triserialis, Dev. Biol., 104:65–85.PubMedCrossRefGoogle Scholar
  31. Weisblat, D.A., Sawyer, R.T. and Stent, G.S., 1978, Cell lineage analysis by intracellular injection of a tracer enzyme, Science, 202:1295–1298.PubMedCrossRefGoogle Scholar
  32. Weisblat, D.A., Zackson, S.L., Blair, S.S. and Young, J.D., 1980b, Cell lineage analysis by intracellular injection of fluorescent tracers, Science, 209:1538–1541.PubMedCrossRefGoogle Scholar
  33. Whitman, C.O., 1878, The embryology of Clepsine. Quart. J. Micro. Sci. 18:215–315.Google Scholar
  34. Whittaker, J.R., 1980, Acetylcholinesterase development in extra cells by changing the distribution of myoplasm in ascidian embryos, J. Embryol. Exp. Morph., 55:343–354.PubMedGoogle Scholar
  35. Zackson, S.L., 1984, Cell lineage, cell-cell interaction, and segment formation in the ectoderm of a glossiphoniid leech embryo, Dev. Biol., 104:143–160.PubMedCrossRefGoogle Scholar
  36. Zur Strassen, O., 1896, Embryonalentwickelung der Ascaris megalocephala, Arch. Entwicklungsmech. Org., 3:27–105.CrossRefGoogle Scholar
  37. Zur Strassen, O., 1896, Embryonalentwickelung der Ascaris megalocephala, Arch. Entwicklungsmech. Org., 3:133–190.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Marty Shankland
    • 1
  • Gunther S. Stent
    • 1
  1. 1.Department of Molecular BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations