Conversion of Phenytoin to Reactive Metabolites in Rat Liver Microsomes

  • Ruth E. Billings
  • Shirlette G. Milton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


The widely used anticonvulsant drug phenytoin (PHT) is primarily metabolized by aromatic hydroxylation. It is presumed that liver microsomal cytochrome(s) P450 catalyze the formation of an epoxide intermediate which gives rise to the major metabolite, 5-(4-hydroxyphenyl)-5- phenylhydantoin (4-HPPH)1,2 and a 3,4-dihydrodiol metabolite (DHD).3 In addition, PHT is converted to a catechol metabolite [5-(3,4-dihydroxyphenyl)-5-phenylhydantoin,CAT].4–7 CAT is formed from both 4-HPPH and DHD, although the predominate route is via 4-HPPH.8


Xanthine Oxidase High Pressure Liquid Chromatography Covalent Binding Reactive Metabolite Cyclohexene Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. C. Butler, The metabolic conversion of 5,5-diphenylhydantoin to 5-(p-hydroxyphenyl)-5-phenylhydantoin, J. Pharmacol. Exp. Ther., 119: 1 (1957).PubMedGoogle Scholar
  2. 2.
    E. W. Maynert, The metabolic fate of diphenylhydantoin in the dog, rat and man, J. Pharmacol. Exp. Ther., 130: 275 (1960).PubMedGoogle Scholar
  3. 3.
    T. Chang, A. Savoy and A. J. Glazko, A new metabolite of 5,5-diphenylhydantoin (Dilantin), Biochem. Biophys. Res. Commun., 38: 444 (1970).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Chang, R. A. Okerholm and A. J. Glazko, Identification of 5-(3,4-dihydroxphenyl)-5-phenylhydantoin: A metabolite of 5,5-diphenylhydantoin in rat urine. Anal. Lett., 5: 195 (1972).CrossRefGoogle Scholar
  5. 5.
    K. K. Midha, K. W. Hindmarsh, I. J. McGilveray and J. K. Cooper, Identification of urinary catechol and methylated catechol metabolites of phenytoin in humans, monkeys and dogs by GLG and GLC-mass spectrometry, J. Pharm. Sci., 66: 1596 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    S. A. Chow and L. J. Fischer. Phenvtoin metabolism in mice, Drug. Metab. Dispos., 10: 156 (1982).PubMedGoogle Scholar
  7. 7.
    R. E. Billings, Sex differences in rats in the metabolism of phenytoin to 5-(3,4-dihydroxyphenyl)-5-phenylhydantoin, J. Pharmacol. Exp. Ther., 225: 630 (1983).PubMedGoogle Scholar
  8. 8.
    R. E. Billings and L. J. Fischer, Oxygen-18 incorporation studies of the metabolism of phenytoin to the catechol, Drug. Metab. Dispos., 13: 312 (1985).PubMedGoogle Scholar
  9. 9.
    F. Martz, C. Failinger, III, and D. A. Blake, Phenytoin teratogenesis: Correlation between embryopathie effect and covalent binding of putative arene oxide metabolite in gestational tissue, J. Pharmacol. Exp. Ther., 203: 231 (1977).PubMedGoogle Scholar
  10. 10.
    C. Pantaratto, M. Arboix, P. Sezzano and R. Abbruzzi, Studies of 5,5-diphenylhydantoin irreversible binding to rat liver microsomal proteins, Biochem. Pharmacol., 31: 1501 (1982).CrossRefGoogle Scholar
  11. 11.
    S. G. Milton, D. K. Hansen and R. E. Billings, Covalent binding of phenytoin metabolites in liver and embryonic tissue, Fed. Proc., 44: 4116 (1985).Google Scholar
  12. 12.
    O. N. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein determination with the Folin phenol reagent, J. Biol. Chem., 193: 265 (1951).PubMedGoogle Scholar
  13. 13.
    E. Dybing, S. D. Nelson, J. R. Mitchell, H. A. Sasame and J. R. Gillette, Oxidation of alpha-methyldopa and other catechols by cytochrome P450-generated superoxide anion: Possible mechanism of methyldopa hepatitis, Mol. Pharmacol., 12: 911 (1976).PubMedGoogle Scholar
  14. 14.
    E. C. Horning, J. P. Thenot and E. D. Helton, Toxic agents resulting from the oxidative metabolism of steroid hormones and drugs. J. Toxicol. Environ. Hlth., 4: 341 (1978).CrossRefGoogle Scholar
  15. 15.
    R. C. Smart and V. G. Zannoni, DT-Diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major matabolite of benzene. Mol. Pharmacol., 26: 105 (1984).PubMedGoogle Scholar
  16. 16.
    S. P. Spielberg, G. B. Gordon, D. A. Blake, E. D. Mellits and Dean S. Bross, Anticonvulsant toxicity in vitro: Possible role of arene oxides. L. Pharmacol. Exp. Ther., 217: 386 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ruth E. Billings
    • 1
  • Shirlette G. Milton
    • 1
  1. 1.Department of PharmacologyUniversity of Texas Health Sciences CenterHoustonUSA

Personalised recommendations