Reactions of Glutathione with Oxidative Intermediates of Acetaminophen

  • David W. Potter
  • Jack A. Hinson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


Acetaminophen (4’-hydroxyacetanilide) is an analgesic and antipyretic drug, which is reportedly safe at low doses, but when administered in large doses causes hepatic necrosis and renal damage in both humans and laboratory animals (1–8). Acetaminophen is thought to be metabolized to reactive intermediate(s) that cause toxic reactions and current thinking suggests that acetaminophen may be activated via a one-electron oxidation mechanisms to give N-acetyl-p-benzosemiquinone imine (9) or a two-electron oxidation to give N-acetyl-p-benzoquinone imine (10).


Horseradish Peroxidase Incubation Mixture Hepatic Necrosis Quinone Imine Benzoquinone Imine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Boyd and G.M. Bereczky, Liver necrosis from paracetamol, Brit. J. Biochem. 26: 606–607 (1966).Google Scholar
  2. 2.
    D. G. D. Davidson and W. N. Eastham, Acute liver necrosis following overdose of paracetamol, Brit. Med. J. 2: 497–499 (1966).PubMedCrossRefGoogle Scholar
  3. 3.
    L. F. Prescott, N. Wright, P. Roscoe, and S.S. Brown, Plasma paracetamol half-life and hepatic necrosis in patients with paracetamol overdose, Lancet 1: 519–522 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    J. R. Mitchell, D.J. Jollow, W. Z. Potter, J. R. Gillette, and B. B. Brodie, Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione, J. Pharmacol. Exp. Ther. 187: 211–217 (1973).PubMedGoogle Scholar
  5. 5.
    R. Clark, R. P. H. Thompson, V. Borirakchanyavat, B. Widdop, A. R. Davidson, R. Goulding, and R. Williams, Hepatic damage and death from overdose of paracetamol, Lancet 1: 66–70 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    D. C. Davis, W. Z. Potter, D. J. Jollow, and J. R. Mitchell, Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen, Life Sci., 14: 2099–2109 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    D. J. Jollow, J. R. Mitchell, W. Z. Potter, D. C. Davis, J. R. Gillette, and B.B. Brodie, Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo, J. Pharmacol. Exp. Ther., 187: 195–202 (1973).PubMedGoogle Scholar
  8. 8.
    W. Z. Potter, S. S. Thorgeirsson, D. J. Jollow, and J. R. Mitchell, Acetaminophen induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters, Pharmacology 12: 129–143 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    J. De Vries, Hepatotoxic metabolic activation of paracetamol and its derivatives phenacetin and benorilate: oxygenation or electron transfer?, Biochem. Pharmacol. 30: 399–402 (1984).CrossRefGoogle Scholar
  10. 10.
    D. C. Dahlin, G. T. Miwa, A. Y. H. Lu, and S. D. Nelson, N-acetyl-pbenzoquinone imine: A cytochrome P-450 mediated oxidation product of acetaminophen, Proc. Natl. Acad. Sci. USA 81: 1327–1331 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    D. d. Potter, D. W. Miller, and J. A. Hinson, Identification of acetaminophen polymerization products catalyzed by horseradish peroxidase, J. Biol. Chem. in press (1985).Google Scholar
  12. 12.
    D. W. Potter, D. W. Miller, and J. A. Hinson, Horseradish peroxidase-catalyzed oxidation of acetaminophen to intermediates that form polymers or conjugate with glutathione, Submitted (1985).Google Scholar
  13. 13.
    D. C. Dahlia and S. D. Nelson, Synthesis, decomposition kinetics, and preliminary toxicological studies of pure N-acetyl-pbenzoquinone imine, a proposed toxic metabolite of acetaminophen, J. Med. Chem. 24: 988–993 (1982).Google Scholar
  14. 14.
    H. Sies and K. H. Summer, Hydroperoxide-metabolizing systems in rat liver, Eur. J. Biochem. 57: 503–512 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    A. G. Hildebrandt and I. Roots, Reduced nicotinamide dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes, Arch. Biochem. Biophys. 171: 385–397 (1975).CrossRefGoogle Scholar
  16. 16.
    A. C. Maehly, Plant peroxidase, Methods Enzymol. 2: 801–813 (1955).CrossRefGoogle Scholar
  17. 17.
    P. George, Chemical nature of the secondary hydrogen peroxide compound formed by cytochrome-C peroxidase and horseradish peroxidase, Nature (London) 169: 612–613 (1952).CrossRefGoogle Scholar
  18. 18.
    B. Chance, The kinetics and stoichiometry of the transition from the primary to the secondary peroxidase complex, Arch. Biochem. Biophys. 41: 416–424 (1952).PubMedCrossRefGoogle Scholar
  19. 19.
    I. Yamazaki, H. S. Mason, and L. Piette, Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates of peroxidase, J. Biol. Chem. 235: 2444–2449 (1960).PubMedGoogle Scholar
  20. 20.
    I. Yamazaki, One-electron and two-electron transfer mechanisms in enzymatic oxidation-reduction reactions, Advan. in Biophys. 2:33–76 (1971).Google Scholar
  21. 21.
    P. R. West, L. S. Harmon, P.D. Josephy, and R. P. Mason, Acetaminophen: enzymatic formation of a transient phenoxyl free radical, Biochem. Pharmacol. 33: 2933–2936 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David W. Potter
    • 1
  • Jack A. Hinson
    • 1
  1. 1.National Center for Toxicological ResearchJeffersonUSA

Personalised recommendations