Acetaminophen as a Cosubstrate and Inhibitor of Prostaglandin H Synthase

  • Peter J. Harvison
  • R. W. Egan
  • P. H. Gale
  • Sidney D. Nelson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


Recently, several reports (Marnett et al., 1983; Nordenskjöld et al., 1984) have implicated prostaglandin H synthase (PHS) in the bioactivation of xenobiotics to potentially toxic metabolites. Benzidine (Zenser et al., 1983), p-aminophenol (Josephy et al., 1983), and phenacetin (Andersson et al., 1982) are among the compounds known to undergo metabolic activation by PHS. Of particular interest to us is the fact that this enzyme can metabolize acetaminophen (APAP) to a reactive species that can bind to proteins or form a glutathione conjugate (Moldeus and Rahimtula, 1980; Boyd and Eling, 1981; Mohandas et al., 1981; Moldeus et al., 1982). In fact, it has been suggested (Boyd and Eling, 1981; Mohandas et al., 1981) that the nephrotoxicity sometimes associated with APAP overdosage may be due in part to its metabolism by PHS which is present in high levels in the renal inner medulla.


Electron Spin Resonance Arachidonic Acid Glutathione Conjugate Prostaglandin Synthetase APAP Overdosage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, B., Nordenskjöld, M., Rahimtula, A., and Moldeus, P., 1982, Prostaglandin synthetase-catalyzed activation of phenacetin metabolites to genotoxic products, Mol. Pharmacol., 22: 479.PubMedGoogle Scholar
  2. Boyd, J. A., and Eling, T. E., 1981, Prostaglandin endoperoxide synthetasedependent cooxidation of acetaminophen to intermediates which covalently bind in vitro to rabbit renal medullary microsomes, J. Pharmacol. Exp. Ther., 219: 659.PubMedGoogle Scholar
  3. Dahlin, D. C., and Nelson, S. D., 1982, Synthesis, decomposition kinetics, and preliminary toxicological studies of pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen, J. Med. Chem., 25: 885.PubMedCrossRefGoogle Scholar
  4. Egan, R. W., Paxton, J., and Kuehl, F. A., Jr., 1976, Mechanism for irreversible self-deactivation of prostaglandin synthetase, J. Biol. Chem., 251: 7329.Google Scholar
  5. Egan, R. W., Gale, P. H., Beveridge, G. C., Marnett, L. J., and Kuehl, F. A., Jr., 1980, Direct and indirect involvement of radical scavengers during prostaglandin biosynthesis, in: “Advances in Prostaglandin andThromboxane Research, Vol. 6,” B. Samuelson, P. W. Ramwell, and R. Paoletti, eds., Raven Press, New York, p. 153.Google Scholar
  6. Egan, R. W., Gale, P. H., Baptista, E. M., Kennicott, K. L., VandenHeuvel, W. J. A., Walker, R. W., Fagerness, P. E., and Kuehl, F. A., Jr., 1981, Oxidation reactions by prostaglandin cyclooxygenase-hydroperoxidase, J. Biol.Chem., 256: 7352.PubMedGoogle Scholar
  7. Fernando, C. R., Calder, I. C., and Ham, K. N., 1980, Studies on the mechanism of toxicity of acetaminophen: synthesis and reactions of N-acetyl2,6-di-methyl-and N-acetyl-3,5-dimethylbenzoquinone amines, i7 Med. Chem., 23: 1153.Google Scholar
  8. Hemler, M. E., and Lands, W. E. M., 1980, Evidence for a peroxide-initiated free radical mechanism of prostaglandin biosynthesis, J. Biol. Chem., 255: 6253.PubMedGoogle Scholar
  9. Josephy, P. D., Eling, T. E., and Mason, R. P., 1983, Oxidation of p-aminophenol catalyzed by horseradish peroxidase and prostaglandin synthase, Mol. Pharmacol., 23: 461.PubMedGoogle Scholar
  10. Marnett, L. J., Bienkowski, M. J., Pagels, W. R., and Reed, G. A., 1980, Mechanism of xenobiotic cooxygenation coupled to prostaglandin H2 biosynthesis, in: “Advances in Prostaglandin and Thromboxane Research,Vol. 6,” B. Samuelson, P. W. Ramwell, and R. Paoletti, eds., Raven Press, New York, p. 149.Google Scholar
  11. Marnett, L. J., Dix, T. A., Sacks, R. J., and Sieldlik, P. H., 1983, Oxidation by fatty acid hydroperoxides and prostaglandin synthase, in “Advances in Prostaglandin, Thromboxane, and Leukotriene Research, Vol. 11,” B. Samuelson, R. Paoletti, and P. Ramwell, eds., Raven Press, New York, p. 79.Google Scholar
  12. Mason, R. P., 1979, Free radical metabolites of foreign compounds and their toxicological significance, in: “Reviews in Biochemical Toxicology, Vol. 1,” E. Hodgson, J. R. Bend, and R. M. Philpot, eds., Elsevier North Holland, New York, p. 151.Google Scholar
  13. Mason, R. P., Kalyanaraman, B., Tainer, B. E., and Eling, T. E., 1980, A Carbon-centered free radical intermediate in the prostaglandin synthetase oxidation of arachidonic acid, J. Biol. Chem., 255: 5019.PubMedGoogle Scholar
  14. Mattammal, M. B., Zenser, T. V., Brown, W. W., Herman, C. A., and Davis, B. B., 1979, Mechanism of inhibition of renal prostaglandin production by acetaminophen, J. Pharmacol. Exp. Ther., 210: 405.PubMedGoogle Scholar
  15. Mohandas, J., Duggin, G. G., Harvath, J. S., and Tiller, D. J., 1981, Metabolic activation of acetaminophen (paracetamol) mediated by cytochrome P-450 mixed-function oxidase and prostaglandin endoperoxide synthetase in rabbit kidney, Toxicol. Appl. Pharmacol., 61: 252.PubMedCrossRefGoogle Scholar
  16. Moldeus, P., and Rahimtula, A., 1980, Metabolism of paracetamol to a glutathione conjugate catalyzed by prostaglandin synthetase, Biochem. Biophys. Res. Commun., 96: 469.PubMedCrossRefGoogle Scholar
  17. Moldeus, P., Andersson, B., Rahimtula, A., and Berggren, M., 1982, Prosta-glandin synthetase catalyzed activation of paracetamol, Biochem.Pharmacol., 31: 1363.PubMedCrossRefGoogle Scholar
  18. NordenskjÖld,N,Andorooon,B.,Bahimtula,A.,and Moldeus,P.1984.Prostalandin synthase-catalyzed metabolic activation of some aromatic amines to genotoxic products, Mutat. Res., 127:107.Potter, D. W., Miller, D. W., and Hinson, J. A., 1985, J. Biol. Chem., in press.Google Scholar
  19. Robak, J., Wieckowski, A., and Gryglewski, R., 1978, The effect of 4-acetamidophenol on prostaglandin synthetase activity in bovine and ram seminal vesicle microsomes, Biochem. Pharmacol., 27: 393.PubMedCrossRefGoogle Scholar
  20. Ross, D., Larsson, R., Andersson, B., Nilson, U., Lindquist, T., Lindeke, B., and Moldeus, P., 1985, The oxidation of p-phenetidine by horseradish peroxidase and prostaglandin synthase and the fate of glutathione during such oxidations, Biochem. Pharmacol., 34: 343.PubMedCrossRefGoogle Scholar
  21. West, P. R., Harman, L. S., Josephy, P. D., and Mason, R. P., 1984, Acetaminophen: enzymatic formation of a transient phenoxyl free radical, Biochem.Pharmacol., 33: 2933.PubMedCrossRefGoogle Scholar
  22. Zenser, T. V., Mattammal, M. B., Herman, C. A., Joshi, S., and Davis, B. B., 1978, Effect of acetaminophen on prostaglandin E2 and prostaglandin F2a in the renal inner medulla of rat, Biochim. Biophys. Acta, 2a 542: 486.Google Scholar
  23. Zenser, T. V., Mattammal, M. B., Wise, R. B., Rice, J. R., and Davis, B. B., 1983, Prostaglandin H synthase-catalyzed activation of benzidine: a model to access pharmacologic intervention of the initiation of chemical carcinogenesis, J. Pharmacol. Exp. Ther., 227: 545.PubMedGoogle Scholar
  24. Zenser, T. V., and Davis, B. B., 1984, Enzyme systems involved in the formation of reactive metabolites in the renal medulla: cooxidation via prostaglandin H synthase, Fund. Appl. Toxicol., 4: 922.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Peter J. Harvison
    • 1
  • R. W. Egan
    • 2
  • P. H. Gale
    • 2
  • Sidney D. Nelson
    • 1
  1. 1.Department of Medicinal ChemistryBG-20 University of WashingtonSeattleUSA
  2. 2.Merck Institute for Therapeutic ResearchRahwayUSA

Personalised recommendations