Skip to main content

Piperonyl Butoxide Reduces Salicylate-Induced Nephrotoxicity and Covalent Binding in Male Rats

  • Chapter
Book cover Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

  • 289 Accesses

Abstract

The salicylates are among the most widely used therapeutic agents in the world. Their effectiveness in treating pain, fever and inflammation all contribute to the extensive use of these drugs. Although generally regarded as safe, a number of side effects have been associated with the administration of salicylates. In particular, the development of kidney toxicity is of concern as this damage may lead to renal failure and death (NIH Consensus Development Conference, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, M.W., 1968, Inhibition of microsomal drug metabolism by methylene dioxybenzenes, Biochem. Pharmacol., 17: 2367.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, L., Collins, C. and Starmer, G., 1973, The short term effects of analgesics on the kidney with special reference to acetylsalicylic acid, Pathol., 5: 123.

    Article  CAS  Google Scholar 

  • Bowman, R.H., 1970, Gluconeogenesis in the isolated perfused rat kidney, J. Biol. Chem., 245: 160

    Google Scholar 

  • Calder, J.C., Fender, C.C., Green, G.R., Ham, K.N. and Tange, T.D., 1971, Comparative nephrotoxicity of aspirin and phenacetin derivatives, Br. J. Med., 4: 518

    Article  CAS  Google Scholar 

  • Cham, B.E., Bochner, F., Imhoff, D.M., Johns, D. and Rowland, M., 1980, Simultaneous liquid-chromatographic quantitation of salicylic acid, salicyluric acid and gentisic acid in urine, Clin Chem., 26: 111

    PubMed  CAS  Google Scholar 

  • Friedman, M.A. and Couch, D.B., 1974, Inhibition by piperonyl butoxide of phenobarbital mediated induction of mouse liver microsomal enzyme activity, Res. Comm. Chem. Pathol. Pharmacol., 8: 515

    CAS  Google Scholar 

  • Haas, R., Parker, Jr, W.D., Stumpf, D. and Eguren, L.A., 1985, Salicylate-induced loose coupling: protonmotive force measurements, Biochem. Pharmacol., 34: 900

    CAS  Google Scholar 

  • Johnson, D. and Lardy, H., 1967, Isolation of liver and kidney mitochondria, Methods Enzymol., 10: 94

    Article  CAS  Google Scholar 

  • Jollow, D.J., Mitchell, J.R., Potter, W.Z., Davis, D.C., Gillette, J.R. and Brodie, B.B., 1973, Acetaminophen-induced hepatic necrosis. Role of covalent binding in vivo, J. Pharmacol. Exp. Ther., 187: 195

    PubMed  CAS  Google Scholar 

  • Kalf, G.F., Rushmore, T. and Snyder, R., 1982, Benzene inhibits RNA and protein synthesis in mitochondria from regenerating liver and bone marrow, Chem. Biol. Interact., 42: 353

    Article  PubMed  CAS  Google Scholar 

  • Kyle, M.E. and Kocsis, J.J., The effect of age on salicylate induced nephrotoxicity in male rats, Toxicol. Appl. Pharmacol., in press.

    Google Scholar 

  • Lundin, A. and Thore, A., 1975, Analytical information obtainable by evaluation of the time course of firefly bioluminescence in the assay of ATP, Anal. Biochem., 66: 47

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O., Rosebrough, N.J., Farr, A.L. and Randall, R.J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193: 265

    PubMed  CAS  Google Scholar 

  • Mitchell, J.R., McMurty, R.J., Statham, C.N. and Nelson, D.S., 1977, Molecular basis for drug-induced nephropathies, Am. J. Med., 62: 518

    Article  PubMed  CAS  Google Scholar 

  • Molland, E.A., 1978, Experimental renal papillary necrosis, Kidney Int., 13: 5

    Article  PubMed  CAS  Google Scholar 

  • Nanra, R.S., 1974, Pathology, aetiology and pathogenesis of analgesic nephropathy, Roy. Aust. Coll. Physicians, 4: 602.

    Google Scholar 

  • National Institutes of Health Consensus Development Conference, 1984, Analgesic-associated kidney disease, February 27–29.

    Google Scholar 

  • Niranjan, B.G., Wilson, N.M., Jefcoate, C.R. and Avadhani, N.G., 1984, Hepatic mitochondrial cytochrome P-450 system. Distinctive features of cytochrome P-450 involved in the activation of Aflatoxin Bl and benzo(a)pyrene, J. Biol. Chem., 259; 12495

    PubMed  CAS  Google Scholar 

  • Nishiitsutsuji-Uwo, J.M., Ross, B.D. and Krebs, H.A., 1967, Metabolic activities of the isolated perfused rat kidney, Biochem. J., 103: 852.

    PubMed  CAS  Google Scholar 

  • O’Brien, T.W. and Kalf, G.F., 1967, Ribosomes from rat liver mitochondria. Isolation procedure and contamination studies, J. Biol. Chem., 242: 2172

    PubMed  Google Scholar 

  • Robinson, M.J., Nichols, E.A. and Taitz, L., 1967, Nephrotoxic effect of acute sodium salicylate intoxication in the rat, Arch. Pathol., 84: 224

    PubMed  CAS  Google Scholar 

  • Schnaitman, C.A. and Greenawalt, J.W., 1968, Enzymatic properties of the inner and outer membranes of rat liver mitochondria, J. Cell Biol., 38: 158

    Article  PubMed  CAS  Google Scholar 

  • Shelly, J.H., 1978, Pharmacological mechanisms of analgesic nephropathies, Kidney Int., 13: 15

    Article  Google Scholar 

  • Simmons, F., Bogusky, R.T. and Humes, H.D., 1980, Inhibitory effects of gentamicin on renal mitochondrial oxidative phosphorylaon, J. Pharmacol. Exp. Ther., 214: 709

    PubMed  CAS  Google Scholar 

  • Steel, R.G.D. and Torrie, J.H., 1960, “Principles and Procedures of Statistics,” McGraw-Hill, New York.

    Google Scholar 

  • Stygles, V.G. and Iuliucci, J.D., 1981, Structural and functional alterations in the kidney following intake of nonsteroidal anti-inflammatory analgesics, in: “Toxicology of the Kidney,” J.B. Hook, ed., Raven Press, New York.

    Google Scholar 

  • Tokumitsu, Y., Lee, S. and Ui, M., 1978, In vitro effects of nonsteroidal anti-inflammatory drugs on oxidative phosphorylation in rats, Biochem. Pharmacol., 26: 2101.

    Google Scholar 

  • Tune, B.M. and Fravert, D., 1980, Mechanisms of cephalosporin nephrotoxicity: A comparison of cephaloridine and cephaloglycin, Kidney Int., 18: 591

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, J.M., Harding, P.G. and Humes, H.D., 1982, Mitochondrial bio-energetics during the initiation of mercuric chloride-induced renal injury, J. Biol. Chem., 257: 60

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kyle, M.E., Kocsis, J.J. (1986). Piperonyl Butoxide Reduces Salicylate-Induced Nephrotoxicity and Covalent Binding in Male Rats. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_66

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics