Inhibition of RNA Synthesis in Mouse Macrophages and Lymphocytes by Benzene and Its Metabolites

  • George F. Kalf
  • Robert Snyder
  • Gloria B. Post
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


Chronic exposure of laboratory animals and man to benzene leads to progressive degeneration of bone marrow resulting in aplastic anemia and leukemia (Snyder et al., 1977; Cronkite et al., 1984). The mechanism by which benzene produces myelotoxicity is unknown; substantial evidence indicates that toxicity results from its metabolism to one or more compounds (Snyder et al., 1982) which accumulate in bone marrow (Andrews et al., 1977); these have been shown to be phenol, catechol, and hydro-quinone (Rickert et al., 1979) which can further oxidize to p-benzoquinone.


Conditioned Medium Aplastic Anemia Peritoneal Exudate Cell Spleen Lymphocyte Rubber Policeman 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, L., Lee, E. Witmer, C., Kocsis, J., and Snyder, R., 1977, Effects of toluene on the meabolism, disposition, and hematoopoietic toxicity of [3H]-benzene, Biochem. Pharmacol., 26: 293.PubMedCrossRefGoogle Scholar
  2. Baarson, K., Snyder, C. A., and Albert, R. E., 1984, Repeated exposures of C57B1 mice to 10 ppm inhaled benzene markedly depressed erythropoietic colony formation, Tox.Lett., 20: 337.CrossRefGoogle Scholar
  3. Cronkite, E., Bullis, J., Inoue, T., and Drew, R., 1984, Benzene inhalation produces leukemia in mice, Toxicol. Appl. Pharmacol., 75: 358.PubMedCrossRefGoogle Scholar
  4. D’Agostino, M. A., Lowry, K. M., and Kalf, G. F., 1975, DNA biosynthesis in rat liver mitochondria: inhibition by sulfhydryl compounds and stimulation by cytoplasmic proteins, Arch. Biochem. Biophys., 166: 400.PubMedCrossRefGoogle Scholar
  5. Frash, V. N., Yushkov, B. G., Karaulov, A. V., and Skuratov, V. L., 1976, Mechanism of action of benzene on hematopoiesis (investigation of hematopoietic stem cells), Bull. Exper. Biol., 82: 985.Google Scholar
  6. Gaido, K. and Wierda, P., 1984, In vitro effects of benzene metabolites on bone marrow stromal cells, Toxicol. Appl. Pharmacol., 76: 45.PubMedCrossRefGoogle Scholar
  7. Gill, D. P. and Ahmed, A., 1981, Covalent binding of [14C]benzene to cellular organelles and bone marrow nucleic acids, Biochem. Pharmacol., 30: 1127.PubMedCrossRefGoogle Scholar
  8. Goldstein, B. D., 1984, Clinical hematotoxicity of benzene, in: “Carcinogenicity and Toxicity of Benzene,” M.A. Mehlman ed., Princeton Scientific Publishers, Princeton.Google Scholar
  9. Green, J. D., Snyder, C. A., LoBue, J., Goldstein, B. D., and Albert, R. E., 1981, Acute and chronic dose/response effect of benzene inhalation on the peripheral blood, bone marrow, and spleen cells of CD-1 male mice, Toxicol. Appl. Pharmacol., 59: 204.PubMedCrossRefGoogle Scholar
  10. Greenlee, W. F., Gross, E., and Irons, R., 1981, Relationship between benzene toxicity and the disposition of C-labelled benzene metabolites in the rat, Chem.-Biol. Interact., 33: 285.PubMedCrossRefGoogle Scholar
  11. Greenlee, W. F., Sun, D., and Bus, J. 1981b, A proposed mechanism of benzene toxicity: formation of reactive intermediates from polyphenol metabolites, Toxicol. App. Pharmacol., 59: 187.CrossRefGoogle Scholar
  12. Harigaya, K., Miller, M., Cronkite, E., and Drew, R., 1981, The detection of in vitro liquid bone marrow cultures, Toxicol. App. Pharmacol., 60: 346.CrossRefGoogle Scholar
  13. Hesketh, P.J., Sullivan, R., Valeri, C.R., and McCarroll, L.A., 1984, The production of granulocyte/monocyte colony-stimulating activity by isolated human T lymphocyte subpopulations, Blood, 63: 1141.PubMedGoogle Scholar
  14. Irons, R., Heck, H., Moore, B., and Muirhead, K., 1979, Effects of short term benzene administration on bone marrow cell cycle kinetics in the rat, Toxicol. Appl. Pharmacol., 51: 399.PubMedCrossRefGoogle Scholar
  15. Irons, R.D., and Moore, B.J., 1980, Effect of short term benzene administration on circulating lymphocyte subpopulations in the rabbit: evidence of a selective B-lymphocyte sensitivity, Res. Commun. Chem. Path. Pharmacol., 27: 147.Google Scholar
  16. Irons, R., Dent, J., Baker, T., and Rickert, D., 1980, Benzene is metabolized and covalently bound in bone marrow in situ, Chem.-Biol. Interact., 30: 241.PubMedCrossRefGoogle Scholar
  17. Irons, R. D. and Neptun, D. A., 1980, Effects of the principal hydroxy-metabolites of benzene on microtubule polymerization, Arch. Toxicol., 45: 397.CrossRefGoogle Scholar
  18. Irons, R. D., Neptun, D. A., and Pfeifer, R. W., 1981, Inhibition of lymphocyte transformation and microtubule assembly by quinone metabolites of benzene: evidence of a common mechanism, J. Reticuloendothelial Soc., 30: 359.Google Scholar
  19. Kurland, J. I., 1984, Granulocyte-monocyte progenitor cells, in: “Hematopoiesis,” D.W. Golde, ed., Churchill Livingstone, New York.Google Scholar
  20. Lee, E., Kocsis, J., and Snyder, R., 1974, Acute effects of benzene on Fe incorporation into circulating erythrocytes. Toxicol. Appl. Pharmacol., 27: 431.PubMedCrossRefGoogle Scholar
  21. Lunte, S. M. and Kissinger, P. T., 1983, Detection and identification of sulfhydryl conjugates of p-benzoquinone in microsomal incubations of benzene and phenol, Chem.-Biol. Interact., 47: 195.PubMedCrossRefGoogle Scholar
  22. Moore, M. A. S., 1978, Regulatory role of the macrophage in haemopoiesis, in “Stem Cells and Tissue Homeostasis,” B. I. Lord, C. S. Potten, and R. J. Cole, eds., Cambridge Univ. Press, Cambridge.Google Scholar
  23. Nagaraja, K. V. and Shaw, P. D., 1982, Inhibition of wheat germ RNA polymerase II by 2,6-dibromobenzoquinone and related compounds from Aplysina fistularis. Arch. Biochem. Biophys., 215: 544.PubMedCrossRefGoogle Scholar
  24. Nicola, N.A. and Vadas, M., 1984, Hemopoietic colony-stimulating factors, Immunol. Today, 5: 76.CrossRefGoogle Scholar
  25. Pfeifer, R.W. and Irons, R.D., 1981, Inhibition of lectin-stimulated lymphocyte agglutination and mitogenesis by hydroquinone: reactivity with intracellular sulfhydryl groups, Exper. Mol. Pathol., 35: 189.CrossRefGoogle Scholar
  26. Post, G. B., Snyder, R., and Kalf, G. F., 1984. Inhibition of mRNA synthesis in rabbit bone marrow nuclei in vitro by quinone metabolites of benzene, Chem.-Biol. Interactions, 50: 203.CrossRefGoogle Scholar
  27. Prystowsky, M.B., Otten, G., Naujokas, M.F., Fardiman, J., Ihle, J.W., Goldwasser, E., and Fitch, F.W., 1984, Multiple hemopoietic lineages are found after stimulation of mouse bone marrow precursor cells with interleukin 3, Am. J. Pathol., 117: 171.PubMedGoogle Scholar
  28. Rickert, D., Baker, T., Bus, J., Barrow, C. and Irons, R., 1979, Benzene disposition in the rat after exposure by inhalation. Toxicol. Appl. Pharmacol. 49: 417.CrossRefGoogle Scholar
  29. Rushmore, T., Snyder, R., and Kalf, G., 1984, Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro, Chem-Biol. Interact., 49: 133.PubMedCrossRefGoogle Scholar
  30. Sawahata, T. and Neal, R., 1983, Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes, Molec. Pharmacol., 23: 453.Google Scholar
  31. Snyder, R., Lee, E., Kocsis, J., and Witmer, C., 1977, Bone marrow depressant and leukemogenic actions of benzene, Life Sciences, 21: 1709.PubMedCrossRefGoogle Scholar
  32. Snyder, R., Longacre, S.L., Witmer, C.M., and Kocsis, J.J., 1982, Metabolic correlates of benzene toxicity, in “Biological Reactive Intermediates,” R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, D. G. Gibson, and C. M. Witmer, eds., Plenum Press, New York.Google Scholar
  33. Tavassoli, M. and Friedenstein, A., 1983, Hemopoietic stromal microenvironment, Am. J. Hematol., 15: 195.PubMedCrossRefGoogle Scholar
  34. Tunek, A., Platt, K.L., Bently, P., and Oesch, F., 1978, Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and effects of modifications of this metabolism, Mol. Pharmacol. 14: 920.PubMedGoogle Scholar
  35. Tunek, A., Olofsson, T., and Berlin, M., 1981, Toxic effects of benzene and benzene metabolites on granulopoietic stem cells and bone marrow cellularity in mice. Toxicol. Appl. Pharmacol., 59: 149.PubMedCrossRefGoogle Scholar
  36. Verma, D.S., Johnston, D.A., McCredie, K.B., 1984, Identification of T lymphocyte subpopulations that regulate elaboration of granulocyte-macrophage colony stimulating factor. Br. J. Haematol., 57: 505.PubMedCrossRefGoogle Scholar
  37. Wierda, D., and Irons, R., 1982, Hydroquinone and catechol reduce the frequency of progenitor B lymphocytes in mouse spleen and bone marrow. Immunopharm. 4: 41.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • George F. Kalf
    • 1
  • Robert Snyder
    • 2
  • Gloria B. Post
    • 1
  1. 1.Dept. BiochemistryThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Dept. Pharmacology and ToxicologyRutgers UniversityPiscatawayUSA

Personalised recommendations