Investigation of the Immunological Basis of Halothane-Induced Hepatotoxicity

  • Hiroko Satoh
  • James R. Gillette
  • Lance R. Pohl
  • Tamiko Takemura
  • Victor J. Ferrans
  • Sandra E. Jelenich
  • John G. Kenna
  • James Neuberger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


It is well established that halothane (CF3CHC1Br), an inhalation anesthetic, causes both a mild and a severe form of hepatotoxicity in patients.1 The milder form of hepatotoxicity is characterized by minor elevations in serum transaminase levels and has been reported in about 20% of patients anesthesized with halothane.2,3 The severe form of hepatotoxicity, however, is often fatal and is much rarer.45 Most of the patients with the severe disease have high serum transaminase values and massive hepatic necrosis. The necrosis is often çegtrilobular,6 although other histologic lesions have been reported.7,8


Immunoperoxidase Staining Halothane Hepatitis Hepatocyte Plasma Membrane Swing Bucket Rotor Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. R. Pohl and J. R. Gillette, A perspective on halothane-induced hepatotoxicity, Anesth. Analg. 61: 809 (1982).CrossRefGoogle Scholar
  2. 2.
    R. Wright, O. E. Eade, M. Chisholm, M. Hawksley, B. Lloyd, T. M. Moles, J. C. Edwards, and M. J. Gardner, Controlled prospective study of the effect on liver function of multiple exposure to halothane, Lancet 1: 817 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Trowell, R. Peto, and A. C. Smith, Controlled trial of repeated halothane anesthetics in patients with carcinoma of the uterine cervix treated with radium, Lancet 1: 821 (1975).PubMedGoogle Scholar
  4. 4.
    W. W. Mushin, M. Rosen, and E. V. Jones, Post-halothane jaundice in relation to previous administration of halothane, Br. Med. J. 3: 18 (1971).CrossRefGoogle Scholar
  5. 5.
    H. T. Wark, Postoperative jaundice in children, the influence of halothane, Anesthesia 38: 237 (1983).Google Scholar
  6. 6.
    R. L. Peters, H. A. Edmondson, T. B. Reynolds, J. C. Meister, and T. J. Curphey, Hepatic necrosis associated with halothane-induced hepatotoxicity, Am. J. Med. 47: 748 (1969).PubMedCrossRefGoogle Scholar
  7. 7.
    E. A. Gall, Report of the pathology panel. National halothane study, Anesthesiology 29: 233 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    D. J. Miller, J. Dwyer, and G. Klatskin, Halothane hepatitis: Benign resolution of severe lesion, Ann. Intern. Med. 89: 212 (1978).PubMedGoogle Scholar
  9. 9.
    A. J. Gandolfi, R. D. White, I. G. Sipes, and L. R. Pohl, Bioacti-vatio94and covalent binding of halothane invitro: Studies with PHI- and [C]-halothane, J. Pharmacol.Exo. Ther., 214: 721 (1980).Google Scholar
  10. 10.
    G., K. Gourlay, J. F. Adams, M. J. Cousins, and P. Hall, Genetic differences in reductive metabolism and hepatotoxicity of halothane in three rat strains, Anesthesiology 55: 90 (1981).CrossRefGoogle Scholar
  11. 11.
    J. R. Trudell, B. Bosterling, and A. J. Trevor, Reductive metabolism of halothane by human and rabbit cytochrome P-450. Binding of 1-chloro-2,2,2-trifluoroethyl radical to phospholipids, Mol. Pharmacol. 21: 710 (1982).Google Scholar
  12. 12.
    H. J. Ahr, L. J. King, W. Nastainczyk, and V. Ullrich, The mechanism of reductive dehalogenation of halothane by liver cytochrome P-450, Biochem. Pharmacol. 31: 383 (1982).Google Scholar
  13. 13.
    E. N. Cohen, J. R. Trudell, H. N. Edmunds, and E. Watson, Urinary metabolites of halothane in man, Anesthesiology 43: 392 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Karashima, Y. Hirokata, A. Shigematsu, and T. Furukawa, The in vitro metabolism of halothane (2-bromo-2-ehloro-1,1,1-trifluoroethane) by hepatic miorosomal cytochrome P-450, J. Pharmacol. EXD. Ther. 203: 409 (1977).Google Scholar
  15. 15.
    L. P. McCarty, R. S. Malek, and E. R. Larsen, The effects of deuteration on the metabolism of halogenated anesthetics in the rat, Auesthesiolomv 51: 106 (1979).CrossRefGoogle Scholar
  16. 16.
    I. G. Sipes, A. J. Gandolfi, L. R. Pohl, G. Krishna, and B. R. Brown, Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane, J. Pharmacol. EXD. Ther. 214: 716 (1980).Google Scholar
  17. 17.
    R. Miller and A. Stier, Modification of liver microsomal lipids by halothane metabolites: A multi nuclear NMR spectroscopic study. Naunvn-Sohmiedeberg’s Arch. Pharmaeol. 321: 234 (1982).Google Scholar
  18. 18.
    L. R. Pohl and J. R. Gillette, Determination of toxic pathways of metabolism by deuterium substitution, Drum Metab. Reviews 15: 1335 (1985).Google Scholar
  19. 19.
    J. L. Plummer, P. Hall, M. A. Jenner, and M. J. Cousins, Sex differences in halothane metabolism and hepatotoxicity in a rat model, Anesth. Analg. 64: 563 (1985).CrossRefGoogle Scholar
  20. 20.
    J. L. Plummer, S. Wanwimolruk, M. A. Jenner, P. Hall, and M. J. Cousins, Effects of cimetidine and ranitidine on halothane metabolism and hepatotoxicity in an animal model, Drum Metab. Disd. 12: 106 (1984).Google Scholar
  21. 21.
    C. A. Lunam, M. J. Cousins, and P. Hall, Guinea-Pig model of halothane-associated hepatotoxicity in the absence of enzyme induction and hypoxia, J. Pharmacol. Exp. Ther. 232: 802 (1985).PubMedGoogle Scholar
  22. 22.
    S. Belfrage, I. Ahlgren, and S. Axelson, Halothane hepatitis in an anesthetist, Lancet 2: 1466 (1966).CrossRefGoogle Scholar
  23. 23.
    G. Klatskin and D. V. Kimberg, Recurrent hepatitis attributable to halothane sensitization in an anesthetist, N Fngl. J. Med. 280: 515 (1969).CrossRefGoogle Scholar
  24. 24.
    F. M. T. Carney and R. A. Van Dyke, Halothane hepatitis: A critical review, Anesth. Analg. 51: 135 (1972).Google Scholar
  25. 25.
    B. Walton, B. R. Simpson, D. Doniach, J. Perrin, and A. J. Appleyard, Unexplained hepatitis following anesthesia, Br. Med. J. 1: 1171 (1976).CrossRefGoogle Scholar
  26. 26.
    D. Vergani, D. Tsantoulas, A. L. W. F. Eddleston, M. Davis, and R. Williams, Sensitization to halothane-altered liver components in severe hepatic necrosis after halothane anesthesia, Lancet 2: 801 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Mieli-Vergani, D. Vergani, J. M. Tredger, A. L. W. F. Eddleston, M. Davis, and R. Williams, Lymphocyte cytotoxicity to halothane altered hepatoeytes in patients with severe hepatic necrosis following halothane anesthesia, J. Clin Lab. Immunol. 4: 49 (1980).Google Scholar
  28. 28.
    D. Vergani, G. Mieli-Vergani, A. Alberti, J. Neuberger, A. L. W. F. Eddleston, M. Davis, and R. Williams, A.tibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis, N. Engl. J. Med. 303: 66 (1980).Google Scholar
  29. 29.
    J. Neuberger, G. Mieli-Vergani, J. M. Tredger, M. Davis, and R. Williams, Oxidative metabolism of halothane in the production of altered hepatocyte membrane antigens in acute halothane-induced necrosis, GuI 22: 669 (1981).Google Scholar
  30. 30.
    H. Satoh, Y. Fukuda, D. K. Anderson, V. J. Ferrans, J. R. Gillette, and Lance R. Pohl, Immunological studies on the mechanism of halothane-induced hepatotoxicity: Immunohistochemical evidence of trifluoroacetylated hepatoeytes, J. Pharmaeol. Egp. Ther. 233: 857 (1985).Google Scholar
  31. 31.
    H. Satoh, J. R. Gillette, H. W. Davies, R. D. Sohuliek, and L. R. Pohl, Immunochemical evidence of trifluoroaoetylated cytochromes P-450 in the liver of halothane treated rats, Mol. Pharmacol. (in press).Google Scholar
  32. 32.
    Y. Yasukoehi and B. S. S. Masters, Some properties of a detergent-solubilized NADPH cytochrome e (cytochrome P-450) reduotase purified by biospeoific affinity chromatography, J. Biol. Chem. 251: 5337 (1976).Google Scholar
  33. 33.
    L. Lesko, M. Donlon, G. V. Marinetti, and J. D. Hare, A rapid method for the isolation of rat liver plasma membranes using an aqueous two-phase polymer system, Biochem. Bioohvs. Acta 311: 173 (1973).Google Scholar
  34. 34.
    P. E. Thomas, D. Korzeniowski, D. Ryan, and W. Levin, Preparation of monospecific antibodies against two forms of rat liver cytochrome P450 and quantitation of these antigens in microsomes, Arch. Biochem. Bioohvs. 192: 524 (1979).CrossRefGoogle Scholar
  35. 35.
    S. Avrameas and T. Ternynek, Peroxidase labelled antibody and Fab conjugate with enhanced intracellular penetration, Immunochemistry 8: 1175 (1971).PubMedCrossRefGoogle Scholar
  36. 36.
    H. De Groot, U. Harnisch, and T. Noll, Suicidal inactivation of microsomal cytochrome P-450 by halothane under hypoxie conditions, Biochem. Bioohvs. Res. Commun. 107: 885 (1982).CrossRefGoogle Scholar
  37. 37.
    P. A. Krieter and R. A. Van Dyke, Cytochrome P-450 and halothane metabolism. Decrease in rat liver microsomal P-450 in vitro, Chem. Biol. Interact. 44: 219 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    R. V. Branehflower, R. D. Schulick, J. W. George, and L. R. Pohl, Comparison of the effects of methyl-n-butyl ketone and phenobarbital on rat liver cytochromes P-450 and the metabolism of chloroform to phosgene, Toxicol. ADD1. Pharmacol. 71: 414 (1983).Google Scholar
  39. 39.
    T. Omura and R. Sato, The carbon monoxide binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem. 239: 2370 (1964).Google Scholar
  40. 40.
    P. P. Wang, P. Beaune, L. S. Kaminsky, G. A. Dannan, F. F. Kadlubar, D. Larrey, and F. P. Guengerich, Purification and characterization of six cytochrome P-450 isozymes from human liver microsomes, Biochemistry 22: 5375 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    D. E. Ryan, P. E. Thomas, and W. Levin, Purification and characterization of a minor form of hepatic microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, Arch. Biochem. Bioohvs. 216: 272 (1982).CrossRefGoogle Scholar
  42. 42.
    F. P. Guengerich, G. A. Dannan, S. T. Wright, M. V. Martin, and L. S. Kaminsky, Purification and characterization of liver microsomal cytochromes P-450: Electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone, Biochemistry 21: 6019 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    D. E. Ryan, P. E. Thomas, D. Korzeniowski, and W. Levin, Separation and characterization of highly purified forms of liver microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, phenobarbital, and 3-methycholanthrene, J. Biol. Chem. 254: 1365 (1979).PubMedGoogle Scholar
  44. 44.
    D. J. Waxman, and C. Walsh, Phenobarbital-induced rat liver cytochrome P-450. Purification and characterization of two closely related isozymic forms, J. Biot. Chem. 257: 10446 (1982).Google Scholar
  45. 45.
    D. E. Hultquist, D. W. Reed, P. G. Passon, and W. E. Andrews, Purification and properties of S-protein (hemoprotein559) from human erythrocytes, Biochim. Bioohvs. Acta 229: 33 (1971).Google Scholar
  46. 46.
    H. Glaumann and J. A. Gustafsson, Subcellular localization of steroid hormone metabolism in rat liver, Exd. Mol. Pathol. 27: 221 (1977).CrossRefGoogle Scholar
  47. 47.
    G. Bruder, A. Fink, and E. D. Jarasch, The b-type cytochrome in endoplasmic reticulum of mammary gland epithelium and milk fat globule membranes consists of two components, cytochrome b5 and cytochrome P-420, Bxd. Cell Res. 117: 207 (1978).CrossRefGoogle Scholar
  48. 48.
    E. D. Jarasch, J. Kartenbeck, G. Bruder, A. Fink., D. J. Morre, and W. W. Franke, B-type cytochromes in plasma membranes isolated from rat liver, in comparison with those of endomembranes, J. Cell Biol. 80: 37 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    P. Stasiecki, F. Oesch, G. Bruder, E. D. Jarasch, and W. W. Franke, Distribution of enzymes involved in metabolism of polycyclic aromatic hydrocarbons among rat liver endomembranes and plasma membranes, Eur. J. Cell Biol. 21: 79 (1980).PubMedGoogle Scholar
  50. 50.
    I. M. Vassiletz, E. F. Derkatchev, and S. A. Neifakh, The electron transfer chain in liver cell plasma membrane, Exd. Cell Res. 46: 419 (1967).CrossRefGoogle Scholar
  51. 51.
    Y. Ichikawa and T Tamano, Cytochrome b5 and CO-binding cytochromes in the golgi membranes of mammalian livers, Biochem. Bionhvs. Res. Commun. 40: 297 (1970).CrossRefGoogle Scholar
  52. 52.
    S. Fleischer, B. Fleischer, A. Azzi, and B. Chance, Cytochrome b5 and P-450 in liver cell fractions, Bioohim. Bionhvs. Acta 225: 194 (1971).CrossRefGoogle Scholar
  53. 53.
    P. Emmelot and C. J. Bos, Studies on plasma membranes. XVII. On the chemical composition of plasma membranes prepared from rat and mouse liver and hepatoma, J. Membrane Biol. 9: 83 (1972).CrossRefGoogle Scholar
  54. 54.
    P. Emmelot, C. J. Bos, R. P. van Hoeven, and W. J. van Blitterswijk, Isolation of plasma membranes from rat and mouse livers and hepatomas, in: “Methods in Enzymology,” S. Fleischer and L. Packer, eds., Vol. 31, p. 75, Academic Press, New York (1974).Google Scholar
  55. 55.
    C. von Bahr, E. Hietanen, and H. Glaumann, Oxidation and glucuronidation of certain drugs in various subcellular fractions of rat liver: Binding of desmethylimipramine and hexobarbital to cytochrome P-450 and oxidation and glucuronidation of desmethylimipramine, aminopyrine, p-nitrophenol and 1-naphthol, Acta Pharmacol. Toxicol. 31: 107 (1972).CrossRefGoogle Scholar
  56. 56.
    F. C. Charalampous, N. K. Gonatas, and A. D. Melbourne, Isolation and properties of the plasma membrane of KB cells, J. Cell Biol. 59: 421 (1973).PubMedCrossRefGoogle Scholar
  57. 57.
    S. Matsuura, Y. Fujii-Kuriyama, and Y. Tashiro, Immunoelectron microscope localization of cytochrome P-450 on microsomes and other membrane structures of rat hepatocytes, J. Cell Biol. 78: 503 (1978).PubMedCrossRefGoogle Scholar
  58. 58.
    P. Emmelot and C. J. Bos, Studies on plasma membranes. XI. Inorganic pyrophosphatase, PPi-glucose phosphotransferase and glucose-6-phosphatase in plasma membranes and microsomes isolated from rat and mouse livers and hepatomas, Biochim. Bionhvs. Acta 211: 169 (1970).CrossRefGoogle Scholar
  59. 59.
    S. Fleischer and M. Kervina, Subcellular fractionation of rat liver, in: “Methods in Enzymology,” S. Fleischer and L. Packer, eds., Vol. 31, p. 6, Academic Press, New York (1974).Google Scholar
  60. 60.
    K. E. Howell, A. Ito, and G. E. Palade, Endoplasmic reticulum marker enzymes in golgi fractions-What does this mean ?, J. Cell Biol. 79: 581 (1978).PubMedCrossRefGoogle Scholar
  61. 61.
    G. L. Ginsberg and S. D. Cohen, Plasma membrane alterations and covalent binding to organelles after an hepatotoxic dose of paracetamol, The Toxicologist 5: 154 (1985).Google Scholar
  62. 62.
    K. B. Taylor and H. C. Thomas, Gastrointestinal and liver diseases, in: “Basic and Clinical Immunology,” D. P. Stites, J. D. Stobo, H. H. Fudenberg, and J. V. Wells, eds., p. 518, Lange Medical Publications, Los Altos (1982).Google Scholar
  63. 63.
    J. V. Wells, Immune mechanisms in tissue damage, in: “Basic and Clinical Immunology,” D. P. Stites, J. D. Stobo, H. H. Fudenberg, and J. V. Wells, eds., p. 136, Lange Medical Publications, Los Altos (1982).Google Scholar
  64. 64.
    A. H. Callis, S. D. Brooks, S. J. Waters, A. J. Gandolfi, D. O. Lucas, L. R. Pohl, H. Satoh, and I. G. Sipes, Evidence for a role of the immune system in the pathogenesis of halothane hepatitis, in: “Molecular Mechanisms of Anesthesia, Progress in Anesthesiology,” S. H. Roth, ed., Vol. 3, Raven Press (in press).Google Scholar
  65. 65.
    J. G. Kenna, J. Neuberger, and R. Williams, An enzyme-linked immunosorbent assay for detection of antibodies against halothane-altered hepatocyte antigens, J. Immunol. Method 75: 3 (1984).CrossRefGoogle Scholar
  66. 66.
    J. G. Kenna, J. Neuberger, and R. Williams, Characterization of halothane-induced antigens by immunoblotting, Biochem. Soc. Trans 13: 910 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Hiroko Satoh
    • 1
  • James R. Gillette
    • 1
  • Lance R. Pohl
    • 1
  • Tamiko Takemura
    • 2
  • Victor J. Ferrans
    • 2
  • Sandra E. Jelenich
    • 3
  • John G. Kenna
    • 4
  • James Neuberger
    • 4
  1. 1.Laboratory of Chemical Pharmacology, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Pathology Branch, Ultrastructure Section, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Department of Anesthesiology, Clinical CenterNational Institutes of HealthBethesdaUSA
  4. 4.The Liver UnitKing’s College Hospital and School of Medicine and DentistryDenmark Hill, LondonUK

Personalised recommendations