Quinone Imines as Biological Reactive Intermediates

  • D. Porubek
  • M. Rundgren
  • R. Larsson
  • E. Albano
  • D. Ross
  • S. D. Nelson
  • P. Moldéus
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


Quinone imines represent a class of biological reactive intermediates that has been the focus of intensive toxicological research in recent years. Two representative quinone imines that have been subjects of research in this laboratory and others are shown in Fig. 1. These quinone imines are of toxicological significance since N-acetyl-p-benzoquinone imine is a postulated reactive intermediate formed during metabolism of the analgesic drug acetaminophen1 while 4-(ethoxyphenyl)-p-benzoquinone imine is a possible reactive intermediate formed during metabolism of the analgesic phenacetin2. While acetaminophen is still widely used, phenacetin has largely been discontinued.


Reactive Intermediate Redox Cycling Horse Radish Peroxidase Reactive Metabolite Protein Thiol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Jollow, J.R. Mitchell, W.Z. Potter, D.C. Davis, J.R. Gillette, and B.B. Brodie, Acetaminophen-induced hepatic necrosis. H. Role of covalent binding in vivo, J. Pharmacol. Exp. Ther. 187: 195 (1973).Google Scholar
  2. 2.
    R. Larsson, D. Ross, M. Nordenskjöld, B. Lindeke, L.-I. Olsson, and P. Moldéus, Reactive products formed by peroxidase catalyzed oxidation of p-phenetidine, Chem.-Biol. Interactions, 52: 1 (1984).Google Scholar
  3. 3.
    J.R. Mitchell, D.J. Jollow, W.Z. Potter, J.R. Gillette, and B.B. Brodie, Acetaminophen-induced hepatic mecrosis. IV. Protective role of glutathione, J. Pharmacol. Exp. Ther. 187: 211 (1973).PubMedGoogle Scholar
  4. 4.
    J.R. Rice and P.T. Kissinger, Cooxidation of benzidine by horse radish peroxidase and subsequent formation of possible thioether conjugates of benzidine, Biochem. Biophys. Res. Comm. 104: 1312 (1982).Google Scholar
  5. 5.
    B. Andersson, R. Larsson, A. Ramimtula, and P. Moldéus, Prostaglandin synthase and horse radish peroxidase catalyzed DNA binding of pphenetidine, Carcinogenesis, 5: 161 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    A.G. Streeter, D.C. Dahlin, S.D. Nelson, and T.A. Baillie, The covalent binding of acetaminophen to protein, evidence for cysteine residues as major sites of arylation in vitro, Chem.-Biol. Interactions, 48: 349 (1984).Google Scholar
  7. 7.
    M. Moore, H. Thor, G. Moore, S. Nelson, P. Moldéus, and S. Orrenius, The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine (NAPQI) in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J. Biol. Chem. in press, (1985).Google Scholar
  8. 8.
    B. Andersson, M. Nordenskjöld, A. Rahimtula, and P. Moldéus, Prostaglandin syntehtase-catalyzed activation of phenacetin metabolites to genotoxic products, Molec. Pharmacol. 22: 479 (1982).Google Scholar
  9. 9.
    G.M. Rosen, W.V. Singletary, Jr., E.J. Rauckman, and P.G. Killenberg, Acetaminophen hepatotoxicity: An alternative mechanism, Biochem. Pharmacol. 32: 2053 (1983).Google Scholar
  10. 10.
    L.F. Prescott, W. Wright, P. Roscoe, and S.S. Brown, Plasma paracetamol half-life and hepatic necrosis in patients with paracetamol overdosage, Lancet, 1: 519 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    G.A. Mudge, M.W. Gemboys, and G.G. Duggin, Covalent binding of metabolites of acetaminophen to kidney protein and depletion of renal glutathione, J. Pharmacol, Exp. Ther. 206: 218 (1978).Google Scholar
  12. 12.
    M.W. Gemboys, G.W. Gribble, and G.A. Mudge, Synthesis of N-hydroxyacetaminophen, a postulated toxic metabolite of acetaminophen, and its phenolic sulfate conjugate, J. Med. Chem. 21: 649 (1978).Google Scholar
  13. 13.
    J.A. Hinson, L.R. Pohl, and J.R. Gillette, N-Hydroxyacetaminophen: A microsomal metabolite of N-hydroxyphenacetin but apparently not of acetaminophen, Life Sci. 24: 2133 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    S.D. Nelson, D.C. Dahlin, E.J. Rauckman, and G.M. Rosen, Peroxidasemediated formation of reactive metabolites of acetaminophen, Molec. Pharmacol. 20: 195 (1981).Google Scholar
  15. 15.
    J.A. Hinson, S.D. Nelson, and J.R. Gillette, Metabolism of Ip-180Iphenacetin: The mechanism of activation of phenacetin to reactive metabolites in hamsters, Molec. Pharmacol. 15: 419 (1979).Google Scholar
  16. 16.
    I.C. Calder, M.J. Creek, and P.J. Williams, N-Hydroxyphenacetin as a precursor of 3-substituted 4-hydroxyacetamide metabolites of phenacetin, Chem. Biol. Interact. 8: 87 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    D.J. Miner and P.T. Kissinger, Evidence for the involvement of Nacetyl-p-quinone imine in acetaminophen metabolism, Biochem. Pharmacol. 28: 3285 (1979).Google Scholar
  18. 18.
    I.A. Blair, A.R. Boobis, and D.S. Davies, Paracetamol oxidation: Synthesis and reactivity of N-acetyl-p-benzoquinone imine, Tetr. Letters, 21: 4947 (1980).Google Scholar
  19. 19.
    D.C. Dahlin and S.D. Nelsom, Synthesis decomposition kinetics and preliminary toxicological studies of pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen, J. Med. Chem. 25: 885 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    E. Albano, M. Rundgren, P.J. Harvison, S.D. Nelson, and P. Moldéus, Mechanisms of N-acetyl-p-benzoquinone imine (NAPQI) cytotoxicity, Molec. Pharmacol. in press, (1985).Google Scholar
  21. 21.
    J.A. Hinson, B. Coles, S.D. Nelson, and B. Ketterer, Glutathione transferase catalyzed conjugation of the reactive metabolite of acetaminophen (Abstract), IUPHAR 9th International Congress of Pharmacology, London (1984).Google Scholar
  22. 22.
    C.R. Fernando, I.C. Calder, and K.N. Ham, Studies on the mechanism of toxicity of acetaminophen. Synthesis and reactions of N-acetyl2,6-dimethyl-and N-acetyl-3,5-dimethyl-p-benzoquinone ímines, J. Med. Chem. 23: 1153 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    G.M. Rosen, E.J. Rauckman, S.P. Ellington, D.C. Dahlin, J.C. Christie, and S.D. Nelson, Reduction and glutathione conjugation reactions of N-acetyl-p-benzoquinone imine and two dimethylated anaogues, Molec. Pharmaco1. 25: 151 (1984).Google Scholar
  24. 24.
    D.J. Porubek, M. Rundgren, S.D. Nelson, and P. Moldéus, Investigation of acetaminophen toxicity with an acetaminophen analogue, 3,5dimethylacetaminophen (in preparation).Google Scholar
  25. 25.
    O Spühler and H.U. Zollinger, Die Chronische-Interstitille Nephritis, Z. Klin. Med. 151: 1 (1953).Google Scholar
  26. 26.
    U. Bengtsson, A comparative study of chronic non-obstructive pyelonephritis and renal papillary necrosis, Acta Med. Scand. (Suppl.) 388: 5 (1962).Google Scholar
  27. 27.
    N. Hultengren, C. Lagergren, and A. Ljungqvist, Carcinoma of the renal pelvis in renal papillary necrosis, Acta Clin. Scand. 130: 314 (1965).Google Scholar
  28. 28.
    S. Johansson and L. Wahlqvist, Tumors of urinary bladder and ureter associated with abuse of phenacetin-containing analgesics, Acta Pathol. Microbial. Scand. Sect. A. 85: 768 (1977).Google Scholar
  29. 29.
    R.L. Smith and J.A. Timbell, Factors affecting the metabolism of phenacetin. I. Influence of dose, chronic dosage route of administration and species on the metabolism of (1–14C-acetyl) phenacetin, Xenobiotica, 4: 489 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    I.C. Calder, D.E. Goss, P.J. Williams, C.C. Funder, C.R. Green, K.N. Ham, and J.D. Tange, Neoplasia in the rat induced by N-hydroxyphenacetin, a metabolite of phenacetin, Pathology, 8: 1 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    J.B. Vaught, P.B. Mc Garvey, M.-S. Lee, C.D. Garner, C.Y. Wang, E.M. Linsmaier-Bednar, and C.M. King, Activation of N-hydroxyphenacetin to mutagenic and nucleic acid binding metabolites by acyl transfer deacylation and sulfate conjugation, Cancer Res. 41: 3424 (1981).PubMedGoogle Scholar
  32. 32.
    B. Samuelsson, M. Goldyne, E. Granström, M. Hamburg, S. Hammarström, and C. Malnsten, Prostaglandins and thromboxanes, Ann. Rev. Biochem. 47: 997 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    L.J. Marnett and T.E. Eling, Cooxidation during prostglandin biosynthesis: A pathway for the metabolic activation of xenobiotics, in: “Reviews in Biochemical Toxicology 5”, E. Hodgson, J.R. Bend, and R.M. Philpot, eds., Elsevier Biomedical, New York (1983).Google Scholar
  34. 34.
    D. Ross, R. Larsson, B. Andersson, U. Nilsson, T. Lindqvist, B. Lindeke, and P. Moldéus, The oxidation of p-phenetidine by horse radish peroxidase and prostaglandin synthetase and the fate of glutathione during such reactions, Biochem. Pharmacol. 34: 343 (1985)Google Scholar
  35. 35.
    B.C. Saunders, Peroxidases and catalases, in: “Inorganic Biochemistry 2”, G.L. Eichhorn, ed., Elsevier, New York (1973).Google Scholar
  36. 36.
    D. Ross, R. Larsson, K. Norbeck, R. Ryhage, and P. Moldéus, Charac terization and mechanism of formation of reactive products formed during peroxidase-catalyzed oxidation of p-phenetidine, Molec. Pharmacol. 27: 277 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. Porubek
    • 1
  • M. Rundgren
    • 1
  • R. Larsson
    • 1
  • E. Albano
    • 1
  • D. Ross
    • 1
  • S. D. Nelson
    • 1
  • P. Moldéus
    • 1
  1. 1.Department of ToxicologyKarolinska InstitutetStockholmSweden

Personalised recommendations