Electrophilic Sulfuric Acid Ester Metabolites as Ultimate Carcinogens

  • James A. Miller
  • Elizabeth C. Miller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


It is a great privilege to be the honorees of the Third International Symposium on Biological Reactive Intermediates. We wish to thank the Cochairmen and the Organizing Committee for this signal honor and for the opportunity to contribute to this Symposium.


Mouse Liver Chemical Carcinogen Normal Littermate Ferase Activity Carcinogenic Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, P., 1985, Do cancers arise from a single transformed cell or is monoclonality of tumors a late event in carcinogenesis?, Brit. J. Cancer, 51: 453.PubMedCrossRefGoogle Scholar
  2. Balmain, A., 1985, Transforming ras oncogenes and multistage carcinogenesis, Brit. J. Cancer, 51: 1.PubMedCrossRefGoogle Scholar
  3. Beland, F. A., Miller, D. W., and Mitchum, R. K., 1983, Synthesis of the ultimate hepatocarcinogen, 2-acetylaminofluorene N-sulphate, J. Chem. Soc. Chem. Commun, 30.Google Scholar
  4. Bishop, J. M., 1982, Retroviruses and cancer genes, Adv. Cancer Res, 37: 1.PubMedCrossRefGoogle Scholar
  5. Boberg, E. W., Miller, E. C., Miller, J. A., Poland, A., and Liem, A., 1983, Strong evidence from studies with brachymorphic mice and penta-chlorophenol that l’-sulfoöxysafrole is the major ultimate electrophilic and carcinogenic metabolite of l’-hydroxysafrole in mouse liver, Cancer Res, 43: 5163.PubMedGoogle Scholar
  6. Borchert, P., Wislocki, P. G., Miller, J. A., and Miller, E. C., 1973, The metabolism of the naturally occurring hepatocarcinogen safrole to l’-hydroxysafrole and the electrophilic reactivity of l’-acetoxysafrole, Cancer Res, 33: 575.PubMedGoogle Scholar
  7. Cavalieri, E., Roth, R., and Rogan, E., 1979, Hydroxylation and conjugation at the benzylic carbon atom: a possible mechanism of carcinogenic activation for some methyl-substituted aromatic hydrocarbons, in: “Polynuclear Aromatic Hydrocarbons,” P. W. Jones and P. Leder, eds., Ann Arbor Science, Ann Arbor.Google Scholar
  8. Delclos, K. B., Tarpley, W. G., Miller, E. C., and Miller, J. A., 1984, 4-Aminoazobenzene and N,N-dimethyl-4-aminoazobenzene as equipotent hepatic carcinogens in male C57BL/6 x C3H/He F1 mice and characterization of N-(deoxyguanosin-8-yl)-4-aminoazobenzene as the major persistent hepatic DNA-bound dye in these mice, Cancer Res, 44: 2540.Google Scholar
  9. Drinkwater, N. R., Miller, E. C., Miller, J. A., and Pitot, H. C., 1976, The hepatocarcinogenicity of estragole (1-allyl-4-methoxybenzene) and l’-hydroxyestragole in the mouse and the mutagenicity of l’acetoxyestragole in bacteria, J. Natl. Cancer Inst, 57: 1323.PubMedGoogle Scholar
  10. Farrell, D. F., and McKhann, G. M., 1971, Characterization of cerebroside sulfotransferase from rat brain, J. Biol. Chem, 246: 4694.PubMedGoogle Scholar
  11. Fennell, T. R., Miller, J. A., and Miller, E. C., 1984, Characterization of the biliary and urinary glutathione and N-acetylcysteine metabolites of the hepatic carcinogen l’-hydroxysafrole and its l’-oxo metabolite in rats and mice, Cancer Res, 44: 3231.PubMedGoogle Scholar
  12. Fennell, T. R., Wiseman, R. W., Miller, J. A., and Miller, E. C., 1985, The major role of hepatic sulfotransferase activity in the metabolic activation, DNA adduct formation, and carcinogenicity of l’-hydroxy-2’,3’-dehydroestragole in infant male B6C3F1 mice, Cancer Res. in press.Google Scholar
  13. Fleischer, B., and Smigel, M., 1978, Solubilization and properties of galactosyl-transferase and sulfotransferase activities of Golgi membranes in Triton X-100, J. Biol. Chem, 253: 1632.PubMedGoogle Scholar
  14. Grieg, R. G., Koestler, T. P., Trainer, D. L., Corwin, S. P., Miles, L., Kline, T. P., Sweet, R., Yokoyama, S., and Poste, G., 1985, Tumorigenic and metastatic properties of “normal” and ras-transfected NIH/3T3 cells, Proc. Natl. Acad. Sci. USA, 82: 3698.CrossRefGoogle Scholar
  15. Gutmann, H. R., Smith, B. A., and Springfield, J. R., 1985, Interaction of the ultimate carcinogenic metabolites of N-hydroxy-2-acetylamino-fluorene with nucleophiles, Proc. Amer. Assoc. Cancer Res, 26: 115.Google Scholar
  16. Kriek, E., and Hengeveld, G. M., 1978, Reaction products of the carcinogen N-hydroxy-4-acetylamino-4’-fluorobiphenyl with DNA in liver and kidney of the rat, Chem.-Biol. Interact, 21: 179.PubMedCrossRefGoogle Scholar
  17. Lai, C.-C., Miller, J. A., Miller, E. C., and Liem, A., 1985, N-Sulfoöxy2-aminofluorene is the major ultimate electrophilic and carcinogenic metabolite of N-hydroxy-2-acetylaminofluorene in the livers of infant C57BL/6J x C3H/HeJ Fl (B6C3F1) mice, Carcinogenesis, 6: 1037.PubMedCrossRefGoogle Scholar
  18. Land, H., Parada, L. F., and Weinberg, R. A., 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature (London), 304: 596.CrossRefGoogle Scholar
  19. Leung, A. Y., 1980, Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics,“ John Wiley & Sons, New York.Google Scholar
  20. Maher, V. M., Miller, E. C., Miller, J. A., and Szybalski, W., 1968, Mutations and decreases in density of transforming DNA produced by derivatives of the carcinogens 2-acetylaminofluorene and N-methyl-4-aminoazo-benzene, Mol. Pharmacol, 4: 411.PubMedGoogle Scholar
  21. Marshall, C. J., Vousden, R. H., and Phillips, D. H., 1984, Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide, Nature (London), 310: 586.CrossRefGoogle Scholar
  22. Meerman, J. H., Beland, F. A., and Mulder, G. J., 1981, Role of sulfate in the formation of DNA adducts from N-hydroxy-2-acetylaminofluorene in rat liver in vivo. Inhibition of N-acetylated aminofluorene adduct formation by pentachlorophenol, Carcinogenesis, 2: 413.PubMedCrossRefGoogle Scholar
  23. Meerman, J. H., van Doorn, A. B. D., and Mulder, G. J., 1980, Inhibition of sulfate conjugation of N-hydroxy-2-acetylaminofluorene in isolated perfused rat liver and in the rat in vivo by pentachlorophenol and low sulfate, Cancer Res, 40: 3772.PubMedGoogle Scholar
  24. Miller, E. C., and Miller, J. A., 1947, The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene, Cancer Res, 7: 468.Google Scholar
  25. Miller, E. C., and Miller, J. A., 1981, Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules, Cancer, 47: 2327.PubMedCrossRefGoogle Scholar
  26. Miller, E. C., Swanson, A. B., Phillips, D. H., Fletcher, T. L., Liem, A., and Miller, J. A., 1983, Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and syn-thetic alkenylbenzene derivatives related to safrole and estragole, Cancer Res, 43: 1124.PubMedGoogle Scholar
  27. Miller, J. A., and Miller, E. C., 1953, The carcinogenic aminoazo dyes. Adv. Cancer Res, 1: 339.PubMedCrossRefGoogle Scholar
  28. Miller, J. A., Miller, E. C., and Phillips, D. H., 1982, The metabolic activation and carcinogenicity of alkenylbenzenes that occur naturally in many spices, in: “Carcinogens and Mutagens in the Environment,” Vol. 1, Food Products,“ H. F. Stich, ed., CRC Press, Boca Raton, Florida.Google Scholar
  29. Mulder, G. J., and Meerman, J. H. N., 1978, Glucuronidation and sulphation in vivo and in vitro; selective inhibition of sulphation by drugs and deficiency of inorganic sulphate, in: A. Aito, ed., “Conjugation Reactions in Drug Biotransformation,” Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  30. Oswald, E. O., Fishbein, L., Corbett, B. J., and Walker, M. P., 1971, Identification of tertiary aminomethylenedioxypropiophenones as urinary metabolites of safrole in the rat and guinea pig, Biochim. Biophys. Acta, 230: 237.Google Scholar
  31. Phillips, D. H., Miller, J. A., Miller, E. C., and Adams, B., 1981a, Structures of the DNA adducts formed in mouse liver after administration of the proximate hepatocarcinogen l’-hydroxyestragole, Cancer Res, 41: 176.PubMedGoogle Scholar
  32. Philli s, D. H., Miller, J. A., Miller, E. C., and Adams, B., 1981b, The N2-atom of guanine and the N6-atom of adenine residues as sites for covalent binding of metabolically activated l’-hydroxysafrole to mouse-liver DNA in vivo, Cancer Res, 41: 2664.Google Scholar
  33. Preussmann, R. and Stewart, B. W., 1984, N-Nitroso Compounds, in: “Chem-ical Carcinogens,” 2nd edit., ACS Monograph 182, C. E. Searle, ed., American Chemical Society, Washington, D.C.Google Scholar
  34. Rein, G., Glover, V., and Sandler, M., 1982, Multiple forms of phenolsul-photransferase in human tissues. Selective inhibition by dichloronitrophenol, Biochem. Pharmacol, 31: 1893.PubMedCrossRefGoogle Scholar
  35. Roy, A. B., 1981, Sulfotransferases, in: “Sulfation of Drugs and Related Compounds,” G. J. Mulder, ed., CRC Press, Inc., Boca Raton, Florida.Google Scholar
  36. Ruley, H. E., 1983, Adenovirus early region lA enables viral and cellular transforming genes to transform primary cells in culture, Nature (London), 304: 602.CrossRefGoogle Scholar
  37. Smith, B. A., Gutmann, H. R., and Springfield, J. R., 1985, Interaction of nucleophiles with the enzymatically-activated carcinogen, N-hydroxy2-acetylaminofluorene, and with the model ester, N-acetoxy-2-acetylaminofluorene, Carcinogenesis, 6: 271.PubMedCrossRefGoogle Scholar
  38. Stöhrer, G., Harmonay, L. A., and Brown, G. B., 1979, Sulfotransferase in rat liver nuclei, Proc. Am. Assoc. Cancer Res, 20: 285.Google Scholar
  39. Sugahara, K., and Schwartz, N. B., 1979, Defect in 3’-phosphoadenosine 5’-phosphosulfate formation in brachymorphic mice, Proc. Natl. Acad. Sci. USA, 76: 6615.PubMedCrossRefGoogle Scholar
  40. Sugahara, K., and Schwartz, N. B., 1982, Defect in 3’-phosphoadenosine 5’-phosphosulfate synthesis in brachymorphic mice, Arch. Biochem. Biophys, 214: 602.PubMedCrossRefGoogle Scholar
  41. Swanson, A. B., Miller, E. C., and Miller, J. A., 1981, The side-chain epoxidation and hydroxylation of the hepatocarcinogens safrole and estragole and some related compounds by rat and mouse liver microsomes, Biochim. Biophys. Acta, 673: 504.PubMedCrossRefGoogle Scholar
  42. Watabe, T., 1983, Metabolic activation of 7,12-dimethylbenz[a]anthracene (DMBA) and 7-methylbenz[a]anthracene (7-MBA) by rat liver P-450 and sulfotransferase. J. Toxicological Sciences, 8: 119.CrossRefGoogle Scholar
  43. Watabe, T., Ishizuka, T., Isobe, M., and Ozawa, N., 1982, A 7-hydroxymethyl sulfate ester as an active metabolite of 7,12-dimethylbenz[a]anthracene, Science, 215: 403.PubMedCrossRefGoogle Scholar
  44. Weinberg, R. A., 1982, Oncogenes of spontaneous and chemically induced tumors, Adv. Cancer Res, 36: 149.PubMedCrossRefGoogle Scholar
  45. Weinstein, I. B., 1981, Current concepts and controversies in chemical carcinogenesis, J. Supramol. Struct. Cell. Biochem, 17: 99.PubMedCrossRefGoogle Scholar
  46. Weinstein, I. B., Gattoni-Celli, S., Kirschmeier, P., Hsiao, W., Horowitz, A., and Jeffrey, A., 1984, Cellular targets and host genes in multistage carcinogenesis, Federation Proc, 43: 2287.Google Scholar
  47. Wiseman, R. W., Fennell, T. R., Miller, J. A., and Miller, E. C., 1985, Further characterization of the DNA adducts formed by electrophilic esters of the hepatocarcinogens l’-hydroxysafrole and l’-hydroxyestra-gole in vitro and in mouse liver in vivo, including new adducts at C-8 and N-7 of guanine residues, Cancer Res, 45: 3096.PubMedGoogle Scholar
  48. Wislocki, P. G., Borchert, P., Miller, J. A., and Miller, E. C., 1976, The metabolic activation of the carcinogen l’-hydroxysafrole in vivo and in vitro and the electrophilic reactivities of possible ultimate carcinogens, Cancer Res, 36: 1686.PubMedGoogle Scholar
  49. Wislocki, P. G., Miller, E. C., Miller, J. A., McCoy, E. C., and Rosenkranz, H. S., 1977, Carcinogenic and mutagenic activities of safrole, l’-hydroxysafrole, and some known or possible metabolites, Cancer Res., 37: 1883.Google Scholar
  50. Zarbl, H., Sukumar, S., Arthur, A. V., Martin-Zanca, D., and Barbacid, M., 1985, Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-Nmethylurea during initiation of mammary carcinogenesis in rats, Nature (London), 315: 382.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • James A. Miller
    • 1
  • Elizabeth C. Miller
    • 1
  1. 1.McArdle Laboratory for Cancer Research Medical SchoolUniversity of WisconsinMadisonUSA

Personalised recommendations