Carcinogen-DNA Adduct Formation as a Predictor of Metabolic Activation Pathways and Reactive Intermediates in Benzidine Carcinogenesis

  • Fred F. Kadlubar
  • Yasushi Yamazoe
  • Nicholas P. Lang
  • David Z. J. Chu
  • Frederick A. Beland
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


Benzidine (BZ) is a strong hepatocarcinogen in rats, mice and hamsters and induces mammary tumors in female rats (1–4). However, BZ has been primarily implicated as a human urinary bladder carcinogen as a result of occupational exposure in the dye and rubber industries (5). Limited carcinogenicity experiments in dogs confirm BZ’s ability to induce bladder carcinomas, although its potency in this species appears to be less than that of 4-aminobiphenyl and 2-naphthylamine (6,7). Over the last few years, we have examined carcinogen-DNA adduct formation from BZ in relation to specific metabolic activation pathways and have sugges­ted the involvement of different biologically reactive intermediates leading to liver and urinary bladder carcinogenesis (8–15). In this paper, we will review the findings which resulted in these conclusions. In addition, we will present data on the mechanisms of BZ peroxidation and on the ability of human bladder and colon to catalyze the peroxidative activation of BZ to DNA-bound adducts.


Acetylator Phenotype Hepatic Cytosol Carcinogenic Aromatic Amine Metabolic Activation Pathway Urinary Bladder Carcinogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Haley, Benzidine revisited: a review of the literature and problems associated with the use of benzidine and its congeners, Clin. Toxicol. 8: 13–42 (1975).Google Scholar
  2. 2.
    S. D. Vesselinovitch, K. V. N. Rao, and N. Mihailovich, Factors modulating benzidine carcinogenicity bioassay, Cancer Res. 35: 2814–2819 (1975).PubMedGoogle Scholar
  3. 3.
    C. J. Nelson, K. P. Baetcke, C. H. Frith, R. L. Kodell, and G. Schieferstein, The influence of sex, dose, time, and cross on neoplasia in mice given benzidine dihydrochloride, Toxicol. Appl. Pharmacol. 64: 171–186 (1982).CrossRefGoogle Scholar
  4. 4.
    K. C. Morton, C. Y. Wang, C. D. Garner, and T. Shirai Carcinogenicity of benzidine, N,N’-diacetylbenzidine, and N-hydroxy-N,N’-diacetylbenzidine for female CD rats, Carcinogenesis 2: 747–752 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    IARC, “IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans,” Vol. 29, Lyon, pp. 149–183 (1982).Google Scholar
  6. 6.
    J. L. Radomski, The primary aromatic amines: their biological structure-activity relationships, Annu. Rev. Pharmacol. Toxicol. 19: 129–157 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Spitz, W. H., Maguigan, and K. Dobriner, The carcinogenic action of benzidine, Cancer (Phila.) 3: 789–804 (1950).CrossRefGoogle Scholar
  8. 8.
    C. N. Martin, F. A. Beland, R. W. Roth, and F. F. Kadlubar, Covalent binding of benzidine and N-acetylbenzidine to DNA at the C-8 atom of deoxyguanosine in vivo and in vitro, Cancer Res. 42: 2678–2686 (1982).PubMedGoogle Scholar
  9. 9.
    J. C. Kennelly, F. A. Beland, F. F. Kadlubar, and C. N. Martin, Binding of N-acetylbenzidine and N,N’-diacetylbenzidine to hepatic DNA of rat and hamster in vivo and in vitro, Carcinogenesis 5: 407–412 (1984)PubMedCrossRefGoogle Scholar
  10. 10.
    C. N. Martin, F. A. Beland, J. C. Kennelly, and F. F. Kadlubar Binding of benzidine, N-acetylbenzidine, N,N’-diacetylbenzidine and Direct Blue 6 to rat liver DNA, Environ Health Persp. 49: 101–106 (1983).Google Scholar
  11. 11.
    C. B. Frederick, C. C. Weis, T. J. Flammang, C. N. Martin, and F. F. Kadlubar, Hepatic N-oxidation, acetyl-transfer and DNA-binding of the acetylated metabolites of the carcinogen, benzidine, Carcinogenesis 6: 959–965 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    F. F. Kadlubar, C. B. Frederick, C. C. Weis, and T. V. Zenser, Prostaglandin endoperoxide synthetase-mediated metabolism of carcinogenic aromatic amines and their binding to DNA and protein, Biochem. Biophys. Res. Commun. 108: 253–258 (1982).CrossRefGoogle Scholar
  13. 13.
    R. W. Wise, T. V. Zenser, F. F. Kadlubar, and B. B. Davis, Metabolic activation of carcinogenic aromatic amines by dog bladder and kidney prostaglandin H synthase, Cancer Res. 44: 1893–1897 (1984).PubMedGoogle Scholar
  14. 14.
    Y. Yamazoe, R. W. Roth, and F. F. Kadlubar, Reactivity of benzidine diimine with DNA to form N-(deoxyguanosin-8-yl)-benzidine, Carcinogenesis, in press (1985).Google Scholar
  15. 15.
    Y. Yamazoe, F. A. Beland, and F. A. Kadlubar, Evidence for benzidine diimine as a reactive intermediate in the peroxidase-mediated binding of benzidine to DNA, Proc. Amer. Assoc. Cancer Res. 26: 85 (1985).Google Scholar
  16. 16.
    K. C. Morton, C. M. King, and K. P. Baetcke, Metabolism of benzidine to N-hydroxy-N,N’-diacetylbenzidine and subsequent nucleic acid binding and mutagenicity, Cancer Res. 39: 3107–3113 (1979).PubMedGoogle Scholar
  17. 17.
    K. C. Morton, F. A. Beland, F. E. Evans, N. F. Fullerton, and F. F. Kadlubar, Metabolic activation of N-hydroxy-N,N’-diacetyl-benzidine by hepatic sulfotransferase, Cancer Res. 40: 751–757 (1980).PubMedGoogle Scholar
  18. 18.
    E. Kriek and J. G. Westra, Structural identification of the pyrimidine derivatives formed from N-(deoxyguanosin-8-yl)-2-aminofluorene in aqueous solution at alkaline pH, Carcinogenesis 1: 459–468 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    F. F. Kadlubar and F. A. Beland, Chemical properties of ultimate carcinogenic metabolites of arylamines and arylamides. In: Polycyclic Hydrocarbons and Carcinogenesis, ACS Symposium Series 183, Harvey, R.G., ed., American Chemical Society, Washington, DC, pp 341–370 (1985).Google Scholar
  20. 20.
    F. A. Beland and F. F. Kadlubar, The formation and persistence of arylamine-DNA adducts in vivo, Environ. Health Persp. 62, in press (1985).Google Scholar
  21. 21.
    C. B. Frederick, J. B. Mays, D. M. Ziegler, F. P. Guengerich, and F. F. Kadlubar, Cytochrome P-450- and flavin-containing monooxygenase-catalyzed formation of the carcinogen N-hydroxy-2-aminofluorene and its covalent binding to nuclear DNA, Cancer Res. 42: 2671–2677 (1982).PubMedGoogle Scholar
  22. 22.
    L. A. Poirier, J. A. Miller, and E. C. Miller, The N- and ring-hydroxylation of 2-acetylaminofluorene and the failure to detect N-acetylation of 2-aminofluorene in the dog, Cancer Res. 23: 790–800 (1963).PubMedGoogle Scholar
  23. 23.
    G. M. Lower, Jr., and G. T. Bryan, Enzymatic deacetylation of carcinogenic arylacetamides by tissue microsomes of the dog and other species, J. Toxicol. Environ. Health 1: 421–432 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    R. A. Cartwright, Historical and modern epidemiological studies on populations exposed to N-substituted aryl compounds, Environ. Health Persp. 49: 13–19 (1983)CrossRefGoogle Scholar
  25. 25.
    F. A. Beland, D. T. Beranek, K. L. Dooley, R. H. Heflich, and F. F. Kadlubar, Arylamine-DNA adducts in vitro and in vivo: their role in bacterial mutagenesis and urinary bladder carcinogenesis, Environ. Health Persp. 49: 125–134 (1983).CrossRefGoogle Scholar
  26. 26.
    T. V. Zenser, M. B. Mattammal, and B. B. Davis, Cooxidation ofbenzidine by renal medullary prostaglandin cyclooxygenase, J. Pharmacol. Exp. Ther. 211: 460–464 (1979).PubMedGoogle Scholar
  27. 27.
    T. V. Zenser, M. B. Mattammal, H. J. Armbrecht, and B. B. Davis, Benzidine binding to nucleic acids mediated by the peroxidative activity of prostaglandin endoperoxide synthetase, Cancer Res. 40: 2839–2845 (1980).PubMedGoogle Scholar
  28. 28.
    L. J. Marnett and T. E. Eling, Cooxidation during prostaglandin biosynthesis: a pathway Eor the metabolic activation of xenobiotics, In: Reviews in Biochemical Toxicology, Hodgson, E., Bend, J.R., and Philpot, R.M., eds, Elsevier, Amsterdam, pp. 135–172 (1983).Google Scholar
  29. 29.
    K. C. Morton, C. M. King, J. B. Vaught, C. Y. Wang, M.-S. Lee and L. J. Marnett, Prostaglandin H synthase-mediated reaction of carcinogenic arylamines with tRNA and homopolyribonucleotides, Biochem. Biophys. Res. Commun. 111: 96–103 (1983).CrossRefGoogle Scholar
  30. 30.
    R. W. Wise, T. V. Zenser, and B. B. Davis, Prostaglandin H synthase metabolism of the urinary bladder carcinogens benzidine and ANFT, Carcinogenesis 4: 285–289 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    P. D. Josephy, T. Eling, and R. P. Mason, Co-oxidation of benzidine by prostaglandin synthetase and comparison with the activation of horseradish peroxidase, J. Biol. Chem. 258: 5561–5569 (1983).PubMedGoogle Scholar
  32. 32.
    R. W. Wise, T. V. Zenser, and B. B. Davis, Characterization of benzidinediimine: a product of peroxidase metabolism of benzidine, Carcinogenesis 5: 1499–1503 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    Y. Tsuruta, P. D. Josephy, A. D. Rahimtula, and P. J. O’Brien, Peroxidase-catalyzed benzidine binding to DNA and other macromolecules, Chem.-Biol. Interactions 54: 143–158 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Fred F. Kadlubar
    • 1
  • Yasushi Yamazoe
    • 1
  • Nicholas P. Lang
    • 2
  • David Z. J. Chu
    • 2
  • Frederick A. Beland
    • 1
  1. 1.National Center for Toxicological ResearchJeffersonUSA
  2. 2.Veterans Administration Medical CenterLittle RockUSA

Personalised recommendations