Nephrotoxic Amino Acid and Glutathione S-Conjugates: Formation and Renal Activation

  • M. W. Anders
  • Lawrence H. Lash
  • Adnan A. Elfarra
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


The mechanisms by which chemicals produce tissue damage include, for example, biotransformation to reactive, electrophilic metabolites, initiation of lipid peroxidation, and formation of toxic, reduced oxygen metabolites. The liver, because of its abundant capacity for biotransformation, is frequently the target organ for chemicals whose toxicity is associated with bioactivation. Extrahepatic target organs are well known, and this toxicity may also be associated with target organ bioactivation.


Organic Anion Transport Glutathione Conjugate Renal Proximal Tubular Cell Aminooxyacetic Acid Cysteine Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beeler, T., and Churchich, J.E., 1976, Reactivity of the phosphopyridoxal groups of cystathionine, J. Biol. Chem., 251: 5267.PubMedGoogle Scholar
  2. Bhattacharya, R.K., and Schultze, M.O., 1967, Enzymes from bovine and turkey kidneys which cleave S-(1,2-dichlorovinyl)-L-cysteine, Comp. Biochem. Physiol., 22: 723.Google Scholar
  3. Bhattacharya, R.K., and Schultze, M.O., 1973, Modification of polynucleotides by a fragment produced by enzymatic cleavage of S-(l,2-dichlorovinyl)-L-cysteine, Biochem. Biophys. Res. Commun., 53: 172.PubMedCrossRefGoogle Scholar
  4. Boyd, M.R., and Dutcher, J.S., 1981, Renal toxicity due to reactive metabolites formed in situ in the kidney: Investigations with 4ipomeanol’in the mouse, J. Pharmacol. Exp. Ther., 216: 640.PubMedGoogle Scholar
  5. Branchflower, R.V., Nunn, D.S., Highet, R.J., Smith, J.H., Hook, J.B., and Pohl, L.R., 1984, Nephrotoxicity of chloroform: Metabolism to phosgene by the mouse kidney, Toxicol. Appl. Pharmacol., 72: 159.PubMedCrossRefGoogle Scholar
  6. Buckley, L.A., Clayton, J.W., Nagle, R.B. and Gandolfi, A.J., 1982, Chlorotrifluoroethylene nephrotoxicity in rats: A subacute study, Fund. Appl. Toxicol., 2: 181.CrossRefGoogle Scholar
  7. Carroll, W.R., Stacy, G.W., and du Vigneaud, V., 1949, A-Ketobutyric acid as a product in the enzymatic cleavage of cystathionine, J. Biol. Chem., 180: 375.PubMedGoogle Scholar
  8. Dohn, D.R., and Anders, M.W., 1982, Assay of cysteine conjugate ß-lyase activity with S-(2-benzothiazolyl)cysteine as the substrate, Anal. Biochem., 120: 379.PubMedCrossRefGoogle Scholar
  9. Dohn, D.R., Quebbemann, A.J., Borch, R.F., and Anders, M.W., 1985, Enzymatic reaction of chlorotrifluoroethene with glutathione: 19F NMR evidence for stereochemical control of the reaction, Biochemistry, in press.Google Scholar
  10. Elfarra, A.A., and Anders, M.W., 1984, Renal processing of glutathione conjugates. Role in nephrotoxicity, Biochem. Pharmacol., 33: 3729.PubMedCrossRefGoogle Scholar
  11. Elfarra, A.A., and Anders, M.W., 1985, S-(1,2-Dichlorovinyl)-Lhomocysteine (DCVHC), an analogue of the renal toxin S-(1,2-dichlorovinyl)-L-cysteine ( DCVC), is a potent nephrotoxin, Fed. Proc., 44: 1624.Google Scholar
  12. Elfarra, A.A., Beggs, R.B., and Anders, M.W., 1985, Structurenephrotoxicity relationships of S-(2-chloroethyl)-DL-cysteine and analogs: Role for an episulfonium ion, J. Pharmacol. Exp. Ther., 233: 512.PubMedGoogle Scholar
  13. Elfarra, A.A., Jakobson, I., and Anders, M.W., 1985a, Mechanism of S(1,2-dichlorovinyl)glutathione-induced nephrotoxicity, Biochem. Pharmacol., in press.Google Scholar
  14. Hassall, C.D., Gandolfi, A.J., Duhamel, R.C., and Brendel, K., 1984, The formation and biotransformation of cysteine conjugates of halogenated ethylenes by rabbit renal tubules, Chem.-Biol. Interact., 49: 283.PubMedCrossRefGoogle Scholar
  15. Hook, J.B., McCormack, K.M., and Kluwe, W.M., 1979, Biochemical mechanisms of nephrotoxicity, Rev. Biochem. Toxicol., 1: 53.Google Scholar
  16. Jakoby, W.B., 1978, The glutathione transferases in detoxification, in:“Functions of Glutathione in Liver and Kidney,” H. Sies and A. Wendel, Springer-Verlag, New York, p. 157.Google Scholar
  17. Kuo, C-H., Braselton, W.E., and Hook, J.B., 1982, Effect of phenobarbital on cephaloridine toxicity and accumulation in rabbit and rat kidneys, Toxicol. Appl. Pharmacol., 64: 244.PubMedCrossRefGoogle Scholar
  18. Lash, L.H., Dohn, D.R., Elfarra, A.A., and Anders, M.W., 1985, Nephrotoxicity of glutathione and cysteine conjugates in isolated rat kidney cells, Pharmacologist, 27: 227.Google Scholar
  19. Monks, T.J., Lau, S.S., Highet, R.J., and Gillette, J.R., 1985, Glutathione conjugates of 2-bromohydroquinone are nephrotoxic, Drug Metab. Disp., 13:in press.Google Scholar
  20. Morgenstern, R., and DePierre, J.W., 1983, Microsomal glutathione transferase, Eur. J. Biochem., 134: 591.PubMedCrossRefGoogle Scholar
  21. Nachtomi, E., Alumot, E., and Bondi, A., 1966, The metabolism of ethylene dibromide in the rat. I. Identification of detoxification products in urine. Israel J. Chem., 4: 239.Google Scholar
  22. Nash, J.A., King, L.J., Lock, E.A., and Green, T., 1984, The metabolism and disposition of hexachloro-1:3-butadiene in the rat and its relevance to nephrotoxicity, Toxicol. Appl. Pharmacol., 73: 124.Google Scholar
  23. Odum, J., and Green, T., 1984, The metabolism and nephrotoxicity of tetrafluoroethylene in the rat, Toxicol. Appl. Pharmacol., 76: 306.Google Scholar
  24. Parker, V.H., 1965, A biochemical study of the toxicity of Sdichlorovinyl-L-cysteine, Food Cosmet. Toxicol., 3: 75.PubMedCrossRefGoogle Scholar
  25. Potter, C.L., Gandolfi, A.J., Nagle, R.B., and Clayton, J.W., 1981, Effects of inhaled chlorotrifluoroethylene and hexafluoropropene on the rat kidney, Toxicol. Appl. Pharmacol., 59: 431.PubMedCrossRefGoogle Scholar
  26. Rannug, U., Sundvall, A., and Ramel, C., 1978, The mutagenic effect of 1,2-dichloroethane on Salmonella typhimurium. I. Activation through conjugation with glutathione in vitro. Chem.-Biol. Interact., 20: 1.PubMedCrossRefGoogle Scholar
  27. Reed, D.J., Ellis, W.W., and Meck, R.A., 1980, The inhibition of yglutamyltrannspeptidase and glutathione metabolism of isolated rat kidney cells by L-(aS,5S)-a-amino-3-chloro-4,5-dihydro-5isoxazoleacetic acid (AT-125; NSC-163501), Biochem. Biophys. Res. Commun., 94: 1273.CrossRefGoogle Scholar
  28. Rush, G.F., Smith, J.H., Newton, J.F., and Hook, J.B., 1984, Chemically induced nephrotoxicity: Role of metabolic activation. CRC Crit. Rev. Toxicol., 13: 99.CrossRefGoogle Scholar
  29. Ryle, C.M., and Mantle, T.J., 1984, Studies on the glutathione Stransferase activity associated with rat liver mitochondria, Biochem. J., 222: 553.PubMedGoogle Scholar
  30. Stonard, M.D., 1973, Further studies on the site and mechanism of action of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-3mercaptopropionic acid in rat liver, Biochem. Pharmacol., 22: 1329.PubMedCrossRefGoogle Scholar
  31. Stonard, M.D., and Parker, V.H., 1971a, 2–0xoacid dehydrogenases of rat liver mitochondria as the site of action of S-(1,2-dichlorovinyl)-Lcysteine and S-(1,2-dichlorovinyl)-3-mercaptopropionic acid, Biochem. Pharmacol., 20: 2417.CrossRefGoogle Scholar
  32. Stonard, M.D., and Parker, V.H., 1971b, The metabolism of S-(1,2dichlorovinyl)-L-cysteine by rat liver mitochondria, Biochem. Pharmacol., 20: 2429.PubMedCrossRefGoogle Scholar
  33. Terracini, B., and Parker, V.H., 1965, A pathological study on the toxicity of S-dichlorovinyl-L-cysteine, Food Cosmet. Toxicol., 3: 67.PubMedCrossRefGoogle Scholar
  34. Wallach, D.P., 1960, The inhibition of gamma aminobutyric-alphaketoglutaric acid transaminase in vitro and in vivo by aminooxyacetic acid, Biochem. Pharmacol., 5: 166.PubMedCrossRefGoogle Scholar
  35. Webb, W., Elfarra, A., Thom, R., and Anders, M., 1985, S-(2-Chloroethyl)DL-cysteine (CEC)-induced cytotoxicity: A role for the episulfonium ion, Pharmacologist, 27: 228.Google Scholar
  36. Wolf, C.R., Berry, P.N., Nash, J.A., Green, T., and Lock, E.A., 1984, Role of microsomal and cytosolic glutathione S-transferases in the conjugation of hexachloro-1:3-butadiene and its possible relevance to toxicity, J. Pharmacol. Exp. Ther., 228: 202.Google Scholar
  37. Yllner, S., 1971, Metabolism of 1,2-dichloroethane-14C in the mouse. Acta Pharmacol. Toxicol., 30: 257.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. W. Anders
    • 1
  • Lawrence H. Lash
    • 1
  • Adnan A. Elfarra
    • 1
  1. 1.Department of PharmacologyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations