Advertisement

Reactions of Oxaprozin-1-0-Acyl Glucuronide in Solutions of Human Plasma and Albumin

  • H. W. Ruelius
  • S. K. Kirkman
  • E. M. Young
  • F. W. Janssen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)

Abstract

Acyl glucuronides are major metabolites of many carboxylic acids including drugs, various chemicals, as well as endogenously formed compounds such as bilirubin and benzoic acid. Because of their susceptibility to nucleophilic attack acyl glucuronides are generally less stable than other glucuronides (1). Two reactions, hydrolysis and rearrangement (isomerization by acyl migration), contribute to this instability. Both reactions can occur at physiologic pH values. The extent to which they occur depends on the reactivity of the acyl glucuronide which in turn depends on the structure of its aglycone (2,3).

Keywords

Human Serum Albumin Covalent Binding Decanoic Acid Human Albumin Acyl Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Faed, Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs, Drug Metab Rev 15: 1213–1249 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    F.W. Janssen, S.K. Kirkman, C. Fenselau, M. Stogniew, B.R. Hofmann, E.M. Young, and H.W. Ruelius, Metabolic formation of N- and 0-glucuronides of 3-(p-chlorophenyl)thiazolo-[3,2-a] benzimidazole-2-acetic acid, Drug Metab Dispos 10: 599–604 (1982).PubMedGoogle Scholar
  3. 3.
    H.W. Ruelius, E.M. Young, S.K. Kirkman, R.T. Schillings, S.F. Sisenwine, and F.W. Janssen, Biological fate of acyl glucuronides in the rat, Biochem Pharmacol 34: 451–452 (1985).CrossRefGoogle Scholar
  4. 4.
    R. Gugler, The effect of disease on the response to drugs, in “Proceedings of the 7th International Congress of Pharmacology”, P. Duchéne-Mairwaz, ed., Pergamon Press, Oxford (1979).Google Scholar
  5. 5.
    E.M. Faed and E.G. McQueen, Plasma half-life of clofibric acid in renal failure, Br J Clin Pharmacol 7: 407–410 (1979).PubMedGoogle Scholar
  6. 6.
    P.C. Smith, A.F. McDonagh, and L.Z. Benet, Covalent binding of zomepirac acyl glucuronide to albumin in healthy human volunteers, Hepatology 4: 1059 (1984).Google Scholar
  7. 7.
    A. Gautam, H. Seligson, E.R. Gordon, D. Seligson, and J.L. Boyer, Irreversible binding of conjugated bilirubin to albumin in cholestatic rats, J Clin Invest 73: 873–877 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    A.F. McDonagh, L.A. Palma, J.J. Lauff, and T-W. Wu, Origin of mammalian biliprotein and rearrangement of bilirubin glucuronide in vivo in the rat, J Clin Invest 74: 763–770 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    R.B. van Breemen and C. Fenselau, Acylation of albumin by 1–0-acyl glucuronides, Drug Metab Dispos 13: 318–320 (1985).PubMedGoogle Scholar
  10. 10.
    F.W. Janssen, W.J. Jusko, S.T. Chiang, S.K. Kirkman, P.J. Southgate, A.J. Coleman and H.W. Ruelius, Metabolism and kinetics of oxaprozin in normal subjects, Clin Pharmacol Ther 27: 352–362 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    F.W. Janssen, S.K. Kirwan, J.A. Knowles, and H.W. Ruelius, Disposition of 4,5-diphenyl-2-oxazolepropionic acid (oxaprozin) in beagle dogs and rhesus monkeys, Drug Metab Dispos 6: 465–475 (1978).PubMedGoogle Scholar
  12. 12.
    A.J. Lewis, R.P. Carlson, J. Chang, S.C. Gilman, S. Nielson, M.E. Rosenthale, F.W. Janssen, and H.W. Ruelius, The pharmacological profile of oxaprozin, an antiinflammatory and analgesic agent with low gastrointestinal toxicity, Curr Ther Res 34: 777–794 (1983).Google Scholar
  13. 13.
    G.E. Means and M.L. Bender, Acetylation of human serum albumin by p-nitrophenyl acetate, Biochem 14: 4989–4994 (1975).CrossRefGoogle Scholar
  14. 14.
    F.D. Boudinot, C.A. Homon, W.J. Jusko, and H.W. Ruelius, Protein binding of oxazepam and its glucuronide conjugates to human albumin, Biochem Pharmacol 34: 2115–2121 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    N. Ohta, Y. Kurono, and K. Ikeda, Esterase-like activity of human serum albumin II:reaction with N-transcinnamoylimidazoles, J Pharm Sci 72: 385–388 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Kurono, T. Kondo, and K. Ikeda, Esterase-like activity of human serum albumin III: enantioselectivity in the burst phase of reaction with p-nitrophenyl a-methoxyphenyl acetate, Arch Biochem Biophys 227: 339–341 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    P.C. Smith, J. Hasegawa, P.N.J. Langendijk, and L.Z. Benet, Stability of acyl glucuronides in blood, plasma and urine: studies with zomepirac, Drug Metab Dispos 13: 110–112 (1985).PubMedGoogle Scholar
  18. 18.
    I. Sjöholm, B. Ekman, A. Kober, I. Ljungstedt-Pâhlman, B. Seiving, and T. Sjodin, Binding of drugs to human serum albumin. XI. The specificity of three binding sites as studied with albumin immobilized in microparticles, Mol Pharmacol 16: 767–777 (1979).PubMedGoogle Scholar
  19. 19.
    S-W.M. Koh and G.E. Means, Characterization of a small apolar anion binding site of human serum albumin, Arch Biochem Biophys 192: 73–79 (1979)Google Scholar
  20. 20.
    N.P. Sollenne and G.E. Means, Characterization of a specific drug binding site of human serum albumin, Mol Pharmacol 15: 754–757 (1979)PubMedGoogle Scholar
  21. 21.
    K.J. Fehske, W.E. Müller, U. Schlafer, and U. Wollert, Characterization of two important drug binding sites on human serum albumin, Prog Drug Protein Binding, Proc Lect Symp, 2nd 5–15 (1981)Google Scholar
  22. 22.
    W.E. Müller and U. Wollert, Benzodiazepines: specific competitors for the binding of L-tryptophan to human serum albumin, Naunyn-Schmiedeberg’s Arch Pharmacol 288: 17–27 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    K.J. Fehske, W.E. Müller, and U. Wollert, A highly reactive tyrosine residue as part of the indole and benzodiazepine binding site of human serum albumin, Biochem Biophys Acta 577: 346–359 (1979).PubMedGoogle Scholar
  24. 24.
    G.E. Means and H.L. Wu, The reactive tyrosine residue of human serum albumin: characterization of its reaction with diisopropylfluorophosphate, Arch Biochem Biophys 194: 526–530 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    K.J. Fehske, W.E. Müller, and U. Wollert, Direct demonstration of the highly reactive tyrosine residue of human serum albumin located in fragment 299–585, Arch Biochem Biophys 205: 217–221 (1980)PubMedCrossRefGoogle Scholar
  26. 26.
    B.J. Rowe and P.J. Meffin, Diisopropylfluorophosphate increases clofibric acid clearance: supporting evidence for a futile cycle, J Pharmacol Exp Ther 230: 237–241 (1984).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. W. Ruelius
    • 1
  • S. K. Kirkman
    • 1
  • E. M. Young
    • 1
  • F. W. Janssen
    • 1
    • 2
  1. 1.Research DivisionWyeth Laboratories Inc.USA
  2. 2.Research DivisionWyeth Laboratories, Inc.PhiladelphiaUSA

Personalised recommendations