Role of Thiols in Protection Against Biological Reactive Intermediates

  • Pierluigi Nicotera
  • Sten Orrenius
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


Thanks to the pioneering work of Elizabeth and James Miller1 it is now well established that the cytotoxic and carcinogenic effects of a wide variety of chemicals are mediated by reactive products formed during their biotransformation in the organism. It is equally clear that there exist a number of protective systems which can trap, or inactivate, toxic metabolites and thereby prevent their accumulation within the tissues and subsequent toxic effects. Although phase I reactions, in particular those mediated by the cytochrome P-450-linked monooxygenase system, are most often responsible for the production of toxic metabolites, there are now many examples of metabolic activation via phase II reactions, despite the fact that the latter normally serve a protective function. Hence, it is obvious that the formation of toxic metabolites cannot be attributed to any single enzyme or enzyme system, and that the balance between metabolic activation and inactivation is absolutely critical in deciding whether exposure to a potentially toxic compound will result in toxicity, or not.


Redox Cycling Pyridine Nucleotide Protein Thiol Plasma Membrane Fraction Glutathione Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Miller and E.C. Miller, The metabolic activation of carcinogenic aromatic amines and amides, Progr. Exp. Tumor Res. 11: 273 (1969).Google Scholar
  2. 2.
    A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, eds., “Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects”, Raven Press, New York (1983).Google Scholar
  3. 3.
    J.R. Gillette, J.R. Mitchell, and B.B. Brodie, Biochemical basis for drug toxicity, Ann. Rev. Pharmacol. 14: 271 (1974).CrossRefGoogle Scholar
  4. 4.
    J.R. Mitchell, D.J. Jollow, W.Z. Potter, J.R. Gillette, and B.B. Brodie, Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione, J. Pharmacol. Exp. Ther. 187: 211 (1973).PubMedGoogle Scholar
  5. 5.
    N.S. Kosower and E.M. Kosower, The glutathione status of cells, Int. Rev. Cytol. 54: 109 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Meister and M. Anderson, Glutathione, Ann. Rev. Biochem. 52: 711 (1983)PubMedCrossRefGoogle Scholar
  7. 7.
    A. Meister, S.S. Tate, and L.L. Ross, Membrane bound γ-glutamyl trans-peptidase, in: “The Enzymes of Biological Membranes”, A. Martinosi, ed., Plenum Press, New York (1976).Google Scholar
  8. 8.
    W.B. Jakoby, The glutathione-S-transferases: a group of multifunctional detoxification proteins, Adv. Enzymol. 46: 383 (1978)PubMedGoogle Scholar
  9. 9.
    A. Wendel, Glutathione peroxidase, in: “Enzymatic Basis of Detoxication”, W.B. Jakoby, ed., Academic Press, New York (1980).Google Scholar
  10. 10.
    L. Eklöw, P. Moldéus, and S. Orrenius, Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1nitrosourea, Eur. J. Biochem. 138: 459 (1984)PubMedCrossRefGoogle Scholar
  11. 11.
    S.K. Srivastava and E. Beutler, The transport of oxidized glutathione from human erythrocytes, J. Biol. Chem. 244: 9 (1969).PubMedGoogle Scholar
  12. 12.
    T.P.M. Akerboom, M. Bilzer, and H. Sies, Competition between transport of glutathione disulfide (GSSG) and glutathione-S-conjugates from perfused rat liver into the bile, FEBS Lett. 140: 73 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Nicotera, M. Moore, G. Bellomo, F. Mirabelli, and S. Orrenius, Demonstration and partial characterization of glutathione disulfide-stimulated ATPase activity in the plasma membrane fraction from rat hepatocytes, J. Biol. Chem. 260: 1999 (1985).PubMedGoogle Scholar
  14. 14.
    P. Nicotera, C. Baldi, S.-A. Svensson, R. Larsson, G. Bellomo, and S. Orrenius, Glutathione-S-conjugates stimulate ATP hydrolysis in the plasma membrane fraction of rat hepatocytes, FEBS Lett. in press, (1985).Google Scholar
  15. 15.
    F.G. Hopkins, An autooxidable constituent of the cell, Biochem. J. 15: 296 (1921).Google Scholar
  16. 16.
    E. Lundsgaard, Biochem. Z. 217: 162 (1930).Google Scholar
  17. 17.
    D.J. Jollow, J.R. Mitchell, W.Z. Potter, D.C. Davis, J.R. Gillette, and B.B. Brodie, Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo, J. Pharmacol. Exp. Ther. 187: 195 (1973).PubMedGoogle Scholar
  18. 18.
    L. Ernster, DT-diaphorase, Meth. Enzymol. 10: 309 (1967).CrossRefGoogle Scholar
  19. 19.
    H. Thor, M.T. Smith, P. Hartzell, G. Bellomo, S.A. Jewell, and S. Orrenius, The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells, J. Biol. Chem. 257: 12419 (1982).PubMedGoogle Scholar
  20. 20.
    D. Di Monte, D. Ross, G. Bellomo, L. Eklöw, and S. Orrenius, Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes, Arch. Biochem. Biophys. 235: 334 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Di Monte, G. Bellomo, H. Thor, P. Nicotera, and S. Orrenius, Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch. Biochem. Biophys. 235: 343 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    S.A. Jewell, G. Bellomo, H. Thor, S. Orrenius, and M.T. Smith, Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis, Science, 217: 1257 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    F.C. Bygrave, Intracellular calcium and its regulation in liver, in: “Progress in Clinical and Biological Research”, F. Bronner and M. Peterlik, eds., A.R. Liss, New York.Google Scholar
  24. 24.
    E. Carafoli and M. Crompton, The regulation of intracellular Ca2+, Curr. Top. Membr. Transp. 10: 151 (1978).CrossRefGoogle Scholar
  25. 25.
    A.C. Lehninger, A. Vercesi, and E.P. Bababunmi, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. USA, 75: 1690 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    A.E. Vercesi, Possible participation of membrane thiol groups on the mechanism of NAD(P)+-stimulated Ca2+ efflux from mitochondria, Biochem. Biophys. Res. Commun. 119: 305 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Goldstone and H. Crompton, Evidence for ß-adrenergic activation of Na+-dependent efflux of Ca2+ from isolated liver mitochondria, Biochem. J. 204: 369 (1982).PubMedGoogle Scholar
  28. 28.
    L. Moore, T. Chen, H.R. Knapp, and E.J. Landon, Energy dependent calcium sequestration activity in rat liver microsomes, J. Biol. Chem. 250: 4562 (1975).PubMedGoogle Scholar
  29. 29.
    P.B. Moore and N. Kraus-Friedman, Hepatic microsomal Ca2+-dependent ATPase, Biochem. J. 214: 69 (1983).PubMedGoogle Scholar
  30. 30.
    N. Kraus-Friedman, J. Biber, H. Murer, and E. Carafoli, Calcium uptake in isolated hepatic plasma membrane vesicles, Eur. J. Biochem. 129: 7 (1982).CrossRefGoogle Scholar
  31. 31.
    H.J. Berridge and R.F. Irwin, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, London, 312: 315 (1984).CrossRefGoogle Scholar
  32. 32.
    G. Bellomo, S.A. Jewell, and S. Orrenius, The metabolism of menadione impairs the ability of rat liver mitochondria to take up and retain calcium, J. Biol. Chem. 257: 11558 (1982)PubMedGoogle Scholar
  33. 33.
    H. Thor, P. Hartzell, S.-Åson, S. Orrenius, F. Mirabelli, V. Marinoni, and G. Bellomo, On the role of thiol groups in the inhibitor of liver microsomal Ca2+ sequestration by toxic agents, Biochem. Pharmac. in press (1985).Google Scholar
  34. 34.
    P. Nicotera, M. Moore, F. Mirabelli, G. Bellomo, and S. Orrenius, Inhibition of hepatocyte plasma membrane Ca2+-ATPase activity by menadione metabolism and its restoration by thiols, FEBS Lett. 181: 149 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Pierluigi Nicotera
    • 1
  • Sten Orrenius
    • 1
  1. 1.Department of ToxicologyKarolinska InstitutetStockholmSweden

Personalised recommendations