Glutathione Peroxidase and Reactive Oxygen Species in TCDD-Induced Lipid Peroxidation

  • S. J. Stohs
  • Z. F. Al-Bayati
  • M. Q. Hassan
  • W. J. Murray
  • H. A. Mohammadpour
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


Previous studies have shown that high doses of TCDD induce hepatic lipid peroxidation and inhibit selenium dependent glutathione peroxidase (GSH-Px) activity. The dose dependent effects of TCDD on hepatic lipid peroxidation (malondialdehyde content) and GSH-Px activity were determined. A dose as low as 1 μg/kg induced hepatic lipid peroxidation and inhibited GSH-Px. Based on the use of scavengers of reactive oxygen species, lipid peroxidation (malondialdehyde formation) by hepatic microsomes from both control and TCDD-treated rats appears to be due primarily to H2O2. The results indicate that superoxide, hydroxyl radical and singlet oxygen are also involved. The differences in the reactive oxygen species involved in microsomal lipid perexidation between control and TCDD treated animals appear to be quantitative rather than qualitative. A 5.9-fold greater rate of malondialdehyde (MDA) formation by microsomes from TCDD treated animals occurred as compared to controls, while livers of TCDD rats had an MDA content that was 5.0-fold greater than the controls. These differences may be due in part to an enhanced production of H2O2 as well as a decrease in the activity of selenium dependent glutathione peroxidase which metabolizes H2O2.


Lipid Peroxidation Hydroxyl Radical Scavenger Sodium Benzoate Microsomal Lipid Peroxidation Hepatic Lipid Peroxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Bus, and J. E. Gibson, Lipid peroxidation and its role in toxicology, Rev. Biochem. Toxicol. 1: 125 (1979).Google Scholar
  2. 2.
    A. L. Tappel, B. Fletcher, and D. W. Deamer, Effects of antioxidants and nutrients on lipid peroxidation fluorescent products and aging parameters in the mouse, J. Gerontol. 28: 415 (1973).PubMedGoogle Scholar
  3. 3.
    P. Hochstein, and L. Ernster, ADP—activated lipid peroxidation coupled to the TPNH oxidase system of microsomes, Biochem. Biophys. Res. Commun. 12: 388 (1963).PubMedCrossRefGoogle Scholar
  4. 4.
    D. J. Kornbrust, and R. D. Mavis, Microsomal lipid peroxidation, Mol. Pharmacol. 17: 408 (1980).PubMedGoogle Scholar
  5. 5.
    E. D. Wills, Mechanism of lipid peroxide formation in animal tissues, Biochem. J. 99: 667 (1966).PubMedGoogle Scholar
  6. 6.
    T. J. Player, D. J. Mills, and A. A. Horton, Age—dependent chafiges in rat liver microsomal and mitochondrial NADPH—dependent lipid peroxidation, Biochem. Biophys. Res. Comm. 78: 1397 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    V. A. Vlademirov, V. I. Olenev, T. B. Suslova, and Z. P. Cheremisina, Lipid peroxidation in mitochondrial membrane, Adv. Lipid Res. 17: 173 (1980).Google Scholar
  8. 8.
    T. C. Pederson, and S. D. Aust, NADPH—dependent lipid peroxidation catalyzed by purified NADPH cytochrome c reductase from rat liver microsomes, Biochem. Biophys. Res Commun. 48: 789 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    R. J. Kociba, and B. A. Schwetz, Toxicity of 2,3,7,8—tetrachlorodibenzo—p—dioxin (TCDD), Drug. Met. Rev. 13: 387 (1982).CrossRefGoogle Scholar
  10. 10.
    A. Poland, and J. C. Knutson, 2,3,7,8—Tetrachlorodibenzo—p—dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity, Ann. Rev. Pharmacol. Toxicol. 22: 517 (1982).CrossRefGoogle Scholar
  11. 1l.
    S. J. Stohs, M. Q. Hassan, and W. J. Murray, Lipid peroxidation as a possible cause of TCDD toxicity, Biochem. Biophys. Res. Commun. 11: 854 (1983).CrossRefGoogle Scholar
  12. 12.
    M. Q. Hassan, S. J. Stohs, and W. J. Murray, Comparative ability of TCDD to induce lipid peroxidation in rats, guinea pigs and Syrian golden hamsters, Bull. Environ. Contam. Toxicol. 31: 649 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    R. A. Sunde, and W. G. Hoekstra, Structure, synthesis and function of glutathione peroxidase, Nutr. Rev. 38: 265 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    A. W. Girotti, and J. P. Thomas, Superoxide and hydrogen peroxide-dependent lipid peroxidation in intact and Triton-dispersed erythrocyte membranes, Biochem. Biophys. Res. Comm. 118: 474 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    O. H. Lowry, A. L. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin-phenol reagent, J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  16. 16.
    P. R. Miles, J. R. Wright, L. Bowman, and H. D. Colby, Inhibition of hepatic microsomal lipid peroxidation by drug substrates without drug metabolism, Biochem. Pharmacol. 29: 565 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Uchiyama, and M. Mihara, Determination of malondialdehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86: 271 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    J. R. Gillette, B. B. Brodie, and B. N. LaDu, The oxidation of drugs by liver microsomes: on the role of TPNH and oxygen, J Pharmacol. Exptl. Ther. 111: 532 (1957).Google Scholar
  19. 19.
    R. W. Estabrook, C. Martin-Wixtrom, Y. Saehi, R. Renneberg, A. Hildebrandt, and J. Werringloer, The peroxidatic function of liver microsomal cytochrome P-450: comparison of hydrogen peroxide and NADPII-catalyzed N-demethylation reactions, Xenobiotica 14: 87 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Ohta, I. Ishiguro, J. Matto, and R. Shinohara, Effect of superoxide dismutase on hydroxylase activity and hydrogen peroxide formation in anthranilamide hydroxylation by a rat liver microsomal monooxygenase system, Biochem. lnt. 8: 617 (1984).Google Scholar
  21. 21.
    H. Kuthan and V. Ullrich, Oxidase and oxygenase function of the microsomal cytochrome P-450 monooxygenase system, Eur. J. Biochem 126: 583 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Bast, and G. R. M. M. Haenen, Cytochrome P-450 and glutathione: what is the significance of their interrelationship in lipid peroxidation?, Trends Biol. Sci. 9: 510 (1984).CrossRefGoogle Scholar
  23. 23.
    R. Dixit, H., Mukhtar, and D. R. Bickers, Evidence that lipid peroxidation in microsomal membranes of epidermis is associated with generation of hydrogen peroxide and singlet oxygen, Biochem. Biophys. Res. Commun. 105: 546 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    C. E. Thomas, L. A. Morehouse, and S.D. Aust, Ferritin and superoxide-dependent lipid peroxidation, J. Biol. Chem. 260: 3275 (1985).PubMedGoogle Scholar
  25. 25.
    G. H. Posner, J. R. Lever, K. Miura, C. Lisek, H. H. Seliger, and A. Thompson, A chemiluminescent probe specific for singlet oxygen, Biochem. Biophys. Res. Commun. 123: 869 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. J. Stohs
    • 1
  • Z. F. Al-Bayati
    • 1
  • M. Q. Hassan
    • 1
  • W. J. Murray
    • 1
  • H. A. Mohammadpour
    • 1
  1. 1.Department of Biomedical ChemistryUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations