Skip to main content

The Peroxidative Activation of Butylated Hydroxytoluene to BHT-Quinone Methide and Stilbenequinone

  • Chapter
Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

Butylated hydroxytoluene (BHT, 2,6-di-tert-butyl-4-methyl-phenol) is a commonly used antioxidant allowed in foods in amounts up to 0.02% of the weight of fat present. BHT helps prevent undesirable oxidation reactions from occurring by acting as a free radical scavenger. BHT is also used as a stabilizer in pesticides, gasolines and lubricants, soaps and cosmetics, and as an antiskinning agent in paints and inks (1). BHT has been shown to have a protective effect against the toxicity and carcinogenicity of a wide variety of chemicals (2). However, several recent animal studies have questioned the presumed safety of this antioxidant. For example, BHT has been shown to cause lung damage in mice (3,4), hemorrhagic death in rats (5) and can act as a tumor promoter in both mice and rats (6,7). One of the best characterized toxic effects of BHT is the destruction of type I alveolar and pulmonary endothelial cells (8) in the mouse lung. This lung damage is thought to arise from the biotransformation of BHT into BHT-quinone methide (2,6-di-tert-butyl-4-methylene-2,5-cyclohexadienone) (9,10), a highly reactive compound (see Figure 1). BHT has been demonstrated to be metabolized to BHT-quinone methide in vivo in the mouse (10) and rat (11). This reaction is presumably catalyzed by a cytochrome P-450 related enzyme (12,13). As a class of chemical compounds, quinone methides have been shown to react with cellular nucleophiles including amines, carbohydrates, alcohols, thiols, and olefins (14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clinical Toxicology of Commercial Products, 5th Ed., R.E. Gosselin, R.P. Smith and H.C. Hodge, eds., Williams and Wilkins, Baltimore (1984).

    Google Scholar 

  2. H. Babich, Butylated hydroxytoluene (BHT): A review, Environ. Res. 29: 1 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. A.A. Marino and J.T. Mitchell, Lung damage in mice following intraperitoneal injection of butylated hydroxytoluene, Proc. Soc. Exp. Biol. Med. 140: 122 (1972).

    PubMed  CAS  Google Scholar 

  4. H. Witschi and W. Saheb, Stimulation of DNA synthesis in mouse lung following intraperitoneal injection of butylated hydroxytoluene, Proc. Soc. Exp. Biol. Med. 147: 690 (1974).

    PubMed  CAS  Google Scholar 

  5. G. Takahashi and K. Kiraga, Dose-response study of hemorrhagic death by dietary butylated hydroxytoluene (BHT) in male rats, Tox. Appl. Pharmacol. 43: 399 (1978).

    Article  CAS  Google Scholar 

  6. H.P. Witschi, Enhancement of lung tumor formation in mice, in: “Carcinogenesis”, M.J. Mass, et al., eds., Raven Press, New York (1985).

    Google Scholar 

  7. K. Imaida, S. Fukushima, T. Shirai, T. Masui, T. Ogiso and N. Ito, Promoting activities of butylated hydroxyanisole, butylated hydroxytoluene and sodium L-ascorbate on forestomach and urinary bladder carcinogenesis initiated with methylnitrosourea in F344 male rats, Gann 75: 769 (1984).

    PubMed  CAS  Google Scholar 

  8. L.J. Smith, The effect of methylprednisolone on lung injury in mice, J. Lab. Clin. Med. 101: 629 (1983).

    PubMed  CAS  Google Scholar 

  9. T. Mizutani, I. Ishida, K. Yamamoto and K. Tajima, Pulmonary toxicity of butylated hydroxytoluene and related alkyl-phenols: Structural requirements for toxic potency in mice, Tox. Appl. Pharmacol. 62: 273 (1982).

    Article  CAS  Google Scholar 

  10. T. Mizutani, K. Yamamoto and K. Tajima, Isotope effects on the metabolism and pulmonary toxicity of butylated hydroxytoluene in mice by deuteration of the 4-methyl group, Tox. Appl. Pharmacol. 69: 283 (1983).

    Article  CAS  Google Scholar 

  11. Takahashi and K. Hiraga, 2,6-di-tert-butyl-4-methylene-2,5-cyclohexadienone: A hepatic metabolite of butylated hydroxytoluene in rats, Fd. Cosmet. Toxicol. 17: 451 (1979).

    Article  CAS  Google Scholar 

  12. J.P. Kehrer and H. Witschi, Effects of drug metabolism inhibitors on butylated hydroxytoluene-induced pulmonary toxicity in mice, Tox. Appl. Pharmacol. 53: 333 (1980).

    Article  CAS  Google Scholar 

  13. K. Tajima, K. Yamamoto and T. Mizutani, Formation of a glutathione conjugate from butylated hydroxytoluene by rat liver microsomes, Biochem. Pharmacol. 34: 2109 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. A.B. Turner, Quinone methides, Quart. Rev. 18: 347 (1964).

    Article  CAS  Google Scholar 

  15. L.J. Marnett and T.E. Eling, Cooxidation during prostaglandin biosynthesis: A pathway for the metabolic activation of xenobiotics, in: “Reviews in Biochemical Toxicology, 5,”, E. Hodgson and J.R. Bond, eds., Elsevier Biomedical, New York (1983).

    Google Scholar 

  16. S.M. Cohen, T.V. Zenser, G. Muraski, S. Fukushima, M.B. Mattammal, N.S. Rapp and B.B. Davis, Aspirin inhibition of N-(4-[5-nitro-2-furyl]-2thiazolyl)formamide-induced lesions of the urinary bladder correlated with inhibition of metabolism by bladder prostaglandin endoperoxide synthetase, Cancer Res. 41: 3355 (1981).

    PubMed  CAS  Google Scholar 

  17. H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265 (1951).

    PubMed  CAS  Google Scholar 

  18. H. Becker, Quinone dehydrogenation. I. The oxidation of monohydric phenols, J. Org. Chem. 30: 982 (1965).

    Article  CAS  Google Scholar 

  19. C.D. Cook, N.G. Nash and H.R. Flanagan, Oxidation of hindered phenols. III. The rearrangement of the 2,6-di-t-butyl-4-methylphenoxy radical, J. Amer. Chem. Soc. 77: 1783 (1955).

    Article  CAS  Google Scholar 

  20. T. Kurechi and T. Kato, Studies on the antioxidants. XX. The effect of butylated hydroxytoluene on tert-butylhydroperoxide-induced oxidation of butylated hydroxyanisole, Chem. Pharm. Bull. 31: 1772 (1983).

    Article  CAS  Google Scholar 

  21. G.A. Reed, E.A. Brooks and T.E. Eling, Phenylbutazone-dependent epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, J. Biol. Chem. 259: 5591 (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Thompson, D.C., Cha, Y.N., Trush, M.A. (1986). The Peroxidative Activation of Butylated Hydroxytoluene to BHT-Quinone Methide and Stilbenequinone. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics