Toxicologic Implications of the Iron-Dependent Activation of Bleomycin A2 by Mouse Lung Microsomes

  • Michael A. Trush
  • Edward G. Mimnaugh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


The bleomycins are a family of glycopeptide antiobiotics currently being utilized in the chemotherapy of human neoplastic diseases (1). Unlike many antineoplastic agents, bleomycin does not elicit significant myelosuppressive activity, which is advantageous not only when considering bleomycin as a single chemotherapeutic agent but also when incorporating it in multiple agent modalities. The administration of bleomycin is accompanied however by the development of dose-limiting pulmonary toxicity which can manifest as life-threatening interstitial fibrosis. Understanding the underlying chemico-biological interactions by which bleomycin initiates alterations in cellular function is important from the standpoint of developing rational chemoprotective strategies.


Pulmonary Toxicity Lung Microsome Terminal Substituent Ascorbic Acid Radical Bleomycin Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.K. Carter and R.H. Blum, Current status of American studies with bleomycin, Prog. Biochem. Pharmacol. 11: 158 (1976).PubMedGoogle Scholar
  2. 2.
    R.M. Burger, J. Peisach and S.B. Horwitz, Activated bleomycin a transient complex of drug, iron and oxygen that degrades DNA, J. Biol. Chem. 256: 11634 (1981).Google Scholar
  3. 3.
    L. Giloni, M. Takeshita, F. Johnson, C. Iden and A.P. Grollman, Bleomycin-induced strand scission of DNA, mechanism of deoxyribose cleavage, J. Biol. Chem. 256: 8608 (1981).PubMedGoogle Scholar
  4. 4.
    M.A. Trush, E.G. Mimnaugh, Z.H. Siddik and T.E. Gram, Bleomycin-metal interaction: ferrous iron-initiated chemiluminescence, Biochem. Biophys. Res. Commun. 112: 378 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    A.P. Grollman, M. Takeshita, K.M.R. Pillar and F. Johnson, Origin and cytotoxic properties of base propenals derived from DNA, Cancer Res. 45: 1127 (1985).PubMedGoogle Scholar
  6. 6.
    Z.M. Igbal, K.W. Kohn, R.A.G. Ewig and A.J. Fornace, Single strand scission and repair of DNA in mammalian cells by bleomycin, Cancer Res. 36: 3834 (1976).Google Scholar
  7. 7.
    B.A. Teicher, J.S. Lazo and A.C. Sartorelli, Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells, Cancer Res. 41: 73 (1981).PubMedGoogle Scholar
  8. 8.
    A.F. Tryka, W.A. Skornik, J.J. Godelski and J.D. Brain, Potentiation of bleomycin-induced lung injury by exposure to 70% oxygen, Amer. Rev. Resp. Dis. 126: 1074 (1982).PubMedGoogle Scholar
  9. 9.
    O. Yoshioka, N. Amano, K. Takahashi, A. Matsuda and H. Umezawa, in: “Bleomycin: Current Status and New Developments”, S.K. Carter, S.T. Crooke and H. Umezawa, eds., Academic Press, New York (1978).Google Scholar
  10. 10.
    Y. Sugiura, Bleomycin-iron complexes. Electron spin resonance study, ligand effect and implication for action mechanism, J. Amer. Chem. Soc. 102: 5208 (1980).CrossRefGoogle Scholar
  11. 11.
    Y. Matsuda, M. Kitahare, K. Maeda and H. Umezawa, Correlation between level of defense against active oxygen in Esherchia coli K12 and resistance to bleomycin, J. Antibiotics (Tokyo), 35: 931 (1982).CrossRefGoogle Scholar
  12. 12.
    O.H. Lowry, N.J. Rosenbrough, A.L. Farr and R.J. Randall, Protein measurement with Folin phenol reagent, J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  13. 13.
    M.T. Kuo and C.W. Haidle, Characterization of chain breakage in DNA induced by bleomycin, Biochim. Biophys. Acta, 335: 109 (1973).Google Scholar
  14. 14.
    M.A. Trush, E.G. Mimnaugh, E. Ginsburg and T.E. Gram, In vitro stimulation by paraquat of reactive oxygen-mediated lipid peroxidation in rat lung microsomes, Toxicol. Appl. Pharmacol. 60:279 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    M.A. Trush, E.G. Mimnaugh, E. Ginsburg and T.E. Gram, Studies on the in vitro interaction of mitomycin c, nitrofuran and paraquat with pulmonary microsomes: stimulation of reactive oxygen-dependent lipid peroxidation, Biochem. Pharmacol. 31: 805 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    M.A. Trush, Demonstration that the temporary sequestering of adventitious iron accounts for the inhibition of microsomal lipid peroxidation by bleomycin A2, Res. Commun. Chem. Pathol. Pharmacol. 37: 21 (1982).PubMedGoogle Scholar
  17. 17.
    M.A. Trush, E.G. Mimnaugh, E. Ginsburg and T.E. Gram, Studies on the interaction of bleomycin A2 with rat lung microsomes. I. Characterization of factors which influence bleomycin-mediated DNA chain breakage, J. Pharmacol. Exp. Ther. 221: 152 (1982).PubMedGoogle Scholar
  18. 18.
    M.A. Trush, Studies on the interaction of bleomycin A2 with rat lung microsomes. III. Effect of exogenous iron on bleomycin-mediated DNA chain breakage, Chem.-Biol. Interactions, 45: 65 (1983).CrossRefGoogle Scholar
  19. 19.
    M.A. Trush and E.G. Mimnaugh, Different roles for superoxide anion in the toxic actions of bleomycin and paraquat, in: “Oxy Radicals and Their Scavenger Systems. Vol. II. Cellular and Medical Aspects”, R.A. Greenwald and G. Cohen, eds., Elsevier Biomedical, New York (1983).Google Scholar
  20. 20.
    R.M. Burger, J. Peisach and S.B. Horwitz, Mechanism of bleomycin action: in vitro studies, Life Sci. 28: 715 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    CC. Winterbourn, Comparison of superoxide with reducing agents in the biological production of hydroxyl radicals, Biochem. J. 182: 625 (1979).PubMedGoogle Scholar
  22. 22.
    K.-L. Fong, P.B. McCay, J.L. Poyer, H.P. Misra and B.B. Keele, Evidence for superoxide-dependent reduction of Fe3+ and its roles in enzyme-generated hydroxyl radical formation, Chem.-Biol. Interactions, 15: 77 (1976).CrossRefGoogle Scholar
  23. 23.
    M.E. Scheulen and H. Kappus, The activation of oxygen by bleomycin is catalyzed by NADPH P-450 reductase in the presence of iron ions and NADPH, in: “Oxygen Radicals in Chemistry and Biology”, W. Bors, M. Saran and D. Tait, eds., Walter deGruyter and Co., Berlin (1984).Google Scholar
  24. 24.
    M.A. Trash, E.G. Mimnaugh, E. Ginsburg and T.E. Gram, Studies on the interaction of bleomycin A2 with rat lung microsomes. II. Involvement of adventitious iron and reactive oxygen in bleomycin-mediated DNA chain breakage, J. Pharmacol. Exp. Ther. 221: 159 (1982).Google Scholar
  25. 25.
    E. Ginsburg, T.E. Gram and M.A. Trush, A comparison of the pulmonary toxicity and chemotherapeutic activity of bleomycin-BAPP to bleomycin and pepleomycin, Cancer Chemother. Pharmacol. 12: 111 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    J.S. Lazo and C.J. Humphreys, Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity, Proc. Natl. Acad. Sci. (USA), 80: 3064 (1983).CrossRefGoogle Scholar
  27. 27.
    M.R. Boyd, Metabolic activation and chemical-induced lung disease: implications for the cancer field, in: “Organ-directed Toxicity, Chemical Indices and Mechanisms”, ST-Brown and D.S. Davies, eds., Pergamon Press Ltd., New York (1981).Google Scholar
  28. 28.
    M.A. Trush, K.A. Kennedy, B.K. Sinha and E.G. Mimnaugh, Bleomycinmediated deoxyribose cleavage in rabbit lung nuclei, Pharmacologist, 25: 225 (1983).Google Scholar
  29. 29.
    N. Yamanaka, M. Fukushima, K. Koizumi, K. Nishida, T. Kato and K. Ota, Enhancement of DNA chain breakage by bleomycin and biological free radical producing systems, in: “Tocopherol, Oxygen and Biomembranes”, C. DeDuve and O. Hagaishi, eds., Elsevier, Amsterdam (1978).Google Scholar
  30. 30.
    H. Umezawa, Bleomycin: Discovery, chemistry and action, Gann Monograph Cancer Res. 19: 3 (1976).Google Scholar
  31. 31.
    J.H. Freedman, S.B. Horwitz and J. Peisach, Reduction of copper(II)bleomycin: A model for in vivo drug activity, Biochem. 21: 2203 (1982).CrossRefGoogle Scholar
  32. 32.
    W.C. Mackellar and F.L. Crane, Iron and copper in plasma membranes, J. Bioenerg. Biomem. 14: 241 (1982).CrossRefGoogle Scholar
  33. 33.
    H. Umezawa, T. Takeuchi, S. Hori, F. Sawa and M. Ishizuka, Studies on the mechanism of antitumor effect of bleomycin on squamous cell carcinoma, J. Antibiotics (Tokyo), 25: 409 (1972).CrossRefGoogle Scholar
  34. 34.
    I.H. Raisfeld, Pulmonary toxicity of bleomycin analogs, Toxicol. Appl. Pharmacol. 56: 326 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    L.O. Rodriguez and S.M. Hecht, Iron (II)-bleomycin. Biochemical and spectral properties in the presence of radical scavengers, Biochem. Biophys. Res. Commun. 104: 1470 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Scarpa, R. Stevanato, P. Viglino and A. Rigo, Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen, J. Biol. Chem. 258: 6695 (1983).PubMedGoogle Scholar
  37. 37.
    Y. Sugiura, T. Suzuki, J. Kuwahara and H. Tanaka, On the mechanism of hydrogen peroxide-, superoxide-, and ultraviolet light-induced DNA cleavages of inactive bleomycin-iron (III) complex, Biochem. Biophys. Res. Commun. 105: 1511 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    I.H. Raisfeld, J.P. Chovan and S. Frost, Bleomycin pulmonary toxicity: Production of fibrosis by bithiazole-terminal amine and terminal amine moieties of bleomycin A2, Life Sci. 30: 1391 (1982).PubMedCrossRefGoogle Scholar
  39. 39.
    W.E. Antholine, T. Sarna, R.C. Sealy, B. Kalyanaraman, G.D. Shields and D.H. Petering, Free radicals from the photodecomposition of bleomycin, Photochem. Photobiol. 41: 393 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    M.A. Trush, E.G. Mimnaugh and T.E. Gram, Activation of pharmacologic agents to radical intermediates: implications for the role of free radicals in drug action and toxicity, Biochem. Pharmacol. 31: 3335 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michael A. Trush
    • 1
  • Edward G. Mimnaugh
    • 2
  1. 1.Dept. Environmental Health SciencesJohns Hopkins UniversityBaltimoreUSA
  2. 2.National Cancer InstituteNIHBethesdaUSA

Personalised recommendations